# -*- coding: UTF-8 -*-
# Copyright (C) 2012 Alex Nitz
#
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# =============================================================================
#
# Preamble
#
# =============================================================================
#
"""This module provides utilities for calculating detector responses and timing
between ground-based observatories.
"""
import os
import logging
import numpy as np
from numpy import cos, sin
import lal
from astropy.time import Time
from astropy import constants, coordinates, units
from astropy.coordinates.matrix_utilities import rotation_matrix
from astropy.units.si import sday, meter
import pycbc.libutils
from pycbc.types import TimeSeries
from pycbc.types.config import InterpolatingConfigParser
logger = logging.getLogger('pycbc.detector')
# Response functions are modelled after those in lalsuite and as also
# presented in https://arxiv.org/pdf/gr-qc/0008066.pdf
[docs]
def gmst_accurate(gps_time):
gmst = Time(gps_time, format='gps', scale='utc',
location=(0, 0)).sidereal_time('mean').rad
return gmst
[docs]
def get_available_detectors():
""" List the available detectors """
dets = list(_ground_detectors.keys())
return dets
[docs]
def get_available_lal_detectors():
"""Return list of detectors known in the currently sourced lalsuite.
This function will query lalsuite about which detectors are known to
lalsuite. Detectors are identified by a two character string e.g. 'K1',
but also by a longer, and clearer name, e.g. KAGRA. This function returns
both. As LAL doesn't really expose this functionality we have to make some
assumptions about how this information is stored in LAL. Therefore while
we hope this function will work correctly, it's possible it will need
updating in the future. Better if lal would expose this information
properly.
"""
ld = lal.__dict__
known_lal_names = [j for j in ld.keys() if "DETECTOR_PREFIX" in j]
known_prefixes = [ld[k] for k in known_lal_names]
known_names = [ld[k.replace('PREFIX', 'NAME')] for k in known_lal_names]
return list(zip(known_prefixes, known_names))
_ground_detectors = {}
[docs]
def add_detector_on_earth(name, longitude, latitude,
yangle=0, xangle=None, height=0,
xlength=4000, ylength=4000,
xaltitude=0, yaltitude=0):
""" Add a new detector on the earth
Parameters
----------
name: str
two-letter name to identify the detector
longitude: float
Longitude in radians using geodetic coordinates of the detector
latitude: float
Latitude in radians using geodetic coordinates of the detector
yangle: float
Azimuthal angle of the y-arm (angle drawn from pointing north)
xangle: float
Azimuthal angle of the x-arm (angle drawn from point north). If not set
we assume a right angle detector following the right-hand rule.
xaltitude: float
The altitude angle of the x-arm measured from the local horizon.
yaltitude: float
The altitude angle of the y-arm measured from the local horizon.
height: float
The height in meters of the detector above the standard
reference ellipsoidal earth
"""
if xangle is None:
# assume right angle detector if no separate xarm direction given
xangle = yangle + np.pi / 2.0
# baseline response of a single arm pointed in the -X direction
resp = np.array([[-1, 0, 0], [0, 0, 0], [0, 0, 0]])
rm2 = rotation_matrix(-longitude * units.rad, 'z')
rm1 = rotation_matrix(-1.0 * (np.pi / 2.0 - latitude) * units.rad, 'y')
# Calculate response in earth centered coordinates
# by rotation of response in coordinates aligned
# with the detector arms
resps = []
vecs = []
for angle, azi in [(yangle, yaltitude), (xangle, xaltitude)]:
rm0 = rotation_matrix(angle * units.rad, 'z')
rmN = rotation_matrix(-azi * units.rad, 'y')
rm = rm2 @ rm1 @ rm0 @ rmN
# apply rotation
resps.append(rm @ resp @ rm.T / 2.0)
vecs.append(rm @ np.array([-1, 0, 0]))
full_resp = (resps[0] - resps[1])
loc = coordinates.EarthLocation.from_geodetic(longitude * units.rad,
latitude * units.rad,
height=height*units.meter)
loc = np.array([loc.x.value, loc.y.value, loc.z.value])
_ground_detectors[name] = {'location': loc,
'response': full_resp,
'xresp': resps[1],
'yresp': resps[0],
'xvec': vecs[1],
'yvec': vecs[0],
'yangle': yangle,
'xangle': xangle,
'height': height,
'xaltitude': xaltitude,
'yaltitude': yaltitude,
'ylength': ylength,
'xlength': xlength,
}
# Notation matches
# Eq 4 of https://link.aps.org/accepted/10.1103/PhysRevD.96.084004
[docs]
def single_arm_frequency_response(f, n, arm_length):
""" The relative amplitude factor of the arm response due to
signal delay. This is relevant where the long-wavelength
approximation no longer applies)
"""
n = np.clip(n, -0.999, 0.999)
phase = arm_length / constants.c.value * 2.0j * np.pi * f
a = 1.0 / 4.0 / phase
b = (1 - np.exp(-phase * (1 - n))) / (1 - n)
c = np.exp(-2.0 * phase) * (1 - np.exp(phase * (1 + n))) / (1 + n)
return a * (b - c) * 2.0 # We'll make this relative to the static resp
[docs]
def load_detector_config(config_files):
""" Add custom detectors from a configuration file
Parameters
----------
config_files: str or list of strs
The config file(s) which specify new detectors
"""
methods = {'earth_normal': (add_detector_on_earth,
['longitude', 'latitude'])}
conf = InterpolatingConfigParser(config_files)
dets = conf.get_subsections('detector')
for det in dets:
kwds = dict(conf.items('detector-{}'.format(det)))
try:
method, arg_names = methods[kwds.pop('method')]
except KeyError:
raise ValueError("Missing or unkown method, "
"options are {}".format(methods.keys()))
for k in kwds:
kwds[k] = float(kwds[k])
try:
args = [kwds.pop(arg) for arg in arg_names]
except KeyError as e:
raise ValueError("missing required detector argument"
" {} are required".format(arg_names))
method(det.upper(), *args, **kwds)
# prepopulate using detectors hardcoded into lalsuite
for pref, name in get_available_lal_detectors():
lalsim = pycbc.libutils.import_optional('lalsimulation')
lal_det = lalsim.DetectorPrefixToLALDetector(pref).frDetector
add_detector_on_earth(pref,
lal_det.vertexLongitudeRadians,
lal_det.vertexLatitudeRadians,
height=lal_det.vertexElevation,
xangle=lal_det.xArmAzimuthRadians,
yangle=lal_det.yArmAzimuthRadians,
xlength=lal_det.xArmMidpoint * 2,
ylength=lal_det.yArmMidpoint * 2,
xaltitude=lal_det.xArmAltitudeRadians,
yaltitude=lal_det.yArmAltitudeRadians,
)
# autoload detector config files
if 'PYCBC_DETECTOR_CONFIG' in os.environ:
load_detector_config(os.environ['PYCBC_DETECTOR_CONFIG'].split(':'))
[docs]
class Detector(object):
"""A gravitational wave detector
"""
def __init__(self, detector_name, reference_time=1126259462.0):
""" Create class representing a gravitational-wave detector
Parameters
----------
detector_name: str
The two-character detector string, i.e. H1, L1, V1, K1, I1
reference_time: float
Default is time of GW150914. In this case, the earth's rotation
will be estimated from a reference time. If 'None', we will
calculate the time for each gps time requested explicitly
using a slower but higher precision method.
"""
self.name = str(detector_name)
lal_detectors = [pfx for pfx, name in get_available_lal_detectors()]
if detector_name in _ground_detectors:
self.info = _ground_detectors[detector_name]
self.response = self.info['response']
self.location = self.info['location']
else:
raise ValueError("Unkown detector {}".format(detector_name))
loc = coordinates.EarthLocation(self.location[0],
self.location[1],
self.location[2],
unit=meter)
self.latitude = loc.lat.rad
self.longitude = loc.lon.rad
self.reference_time = reference_time
self.sday = None
self.gmst_reference = None
[docs]
def set_gmst_reference(self):
if self.reference_time is not None:
self.sday = float(sday.si.scale)
self.gmst_reference = gmst_accurate(self.reference_time)
else:
raise RuntimeError("Can't get accurate sidereal time without GPS "
"reference time!")
[docs]
def lal(self):
""" Return lal data type detector instance """
import lal
d = lal.FrDetector()
d.vertexLongitudeRadians = self.longitude
d.vertexLatitudeRadians = self.latitude
d.vertexElevation = self.info['height']
d.xArmAzimuthRadians = self.info['xangle']
d.yArmAzimuthRadians = self.info['yangle']
d.xArmAltitudeRadians = self.info['xaltitude']
d.yArmAltitudeRadians = self.info['yaltitude']
# This is somewhat abused by lalsimulation at the moment
# to determine a filter kernel size. We set this only so that
# value gets a similar number of samples as other detectors
# it is used for nothing else
d.yArmMidpoint = self.info['ylength'] / 2.0
d.xArmMidpoint = self.info['xlength'] / 2.0
x = lal.Detector()
r = lal.CreateDetector(x, d, lal.LALDETECTORTYPE_IFODIFF)
self._lal = r
return r
[docs]
def gmst_estimate(self, gps_time):
if self.reference_time is None:
return gmst_accurate(gps_time)
if self.gmst_reference is None:
self.set_gmst_reference()
dphase = (gps_time - self.reference_time) / self.sday * (2.0 * np.pi)
gmst = (self.gmst_reference + dphase) % (2.0 * np.pi)
return gmst
[docs]
def light_travel_time_to_detector(self, det):
""" Return the light travel time from this detector
Parameters
----------
det: Detector
The other detector to determine the light travel time to.
Returns
-------
time: float
The light travel time in seconds
"""
d = self.location - det.location
return float(d.dot(d)**0.5 / constants.c.value)
[docs]
def antenna_pattern(self, right_ascension, declination, polarization, t_gps,
frequency=0,
polarization_type='tensor'):
"""Return the detector response.
Parameters
----------
right_ascension: float or numpy.ndarray
The right ascension of the source
declination: float or numpy.ndarray
The declination of the source
polarization: float or numpy.ndarray
The polarization angle of the source
polarization_type: string flag: Tensor, Vector or Scalar
The gravitational wave polarizations. Default: 'Tensor'
Returns
-------
fplus(default) or fx or fb : float or numpy.ndarray
The plus or vector-x or breathing polarization factor for this sky location / orientation
fcross(default) or fy or fl : float or numpy.ndarray
The cross or vector-y or longitudnal polarization factor for this sky location / orientation
"""
if isinstance(t_gps, lal.LIGOTimeGPS):
t_gps = float(t_gps)
gha = self.gmst_estimate(t_gps) - right_ascension
cosgha = cos(gha)
singha = sin(gha)
cosdec = cos(declination)
sindec = sin(declination)
cospsi = cos(polarization)
sinpsi = sin(polarization)
if frequency:
e0 = cosdec * cosgha
e1 = cosdec * -singha
e2 = sin(declination)
nhat = np.array([e0, e1, e2], dtype=object)
nx = nhat.dot(self.info['xvec'])
ny = nhat.dot(self.info['yvec'])
rx = single_arm_frequency_response(frequency, nx,
self.info['xlength'])
ry = single_arm_frequency_response(frequency, ny,
self.info['ylength'])
resp = ry * self.info['yresp'] - rx * self.info['xresp']
ttype = np.complex128
else:
resp = self.response
ttype = np.float64
x0 = -cospsi * singha - sinpsi * cosgha * sindec
x1 = -cospsi * cosgha + sinpsi * singha * sindec
x2 = sinpsi * cosdec
x = np.array([x0, x1, x2], dtype=object)
dx = resp.dot(x)
y0 = sinpsi * singha - cospsi * cosgha * sindec
y1 = sinpsi * cosgha + cospsi * singha * sindec
y2 = cospsi * cosdec
y = np.array([y0, y1, y2], dtype=object)
dy = resp.dot(y)
if polarization_type != 'tensor':
z0 = -cosdec * cosgha
z1 = cosdec * singha
z2 = -sindec
z = np.array([z0, z1, z2], dtype=object)
dz = resp.dot(z)
if polarization_type == 'tensor':
if hasattr(dx, 'shape'):
fplus = (x * dx - y * dy).sum(axis=0).astype(ttype)
fcross = (x * dy + y * dx).sum(axis=0).astype(ttype)
else:
fplus = (x * dx - y * dy).sum()
fcross = (x * dy + y * dx).sum()
return fplus, fcross
elif polarization_type == 'vector':
if hasattr(dx, 'shape'):
fx = (z * dx + x * dz).sum(axis=0).astype(ttype)
fy = (z * dy + y * dz).sum(axis=0).astype(ttype)
else:
fx = (z * dx + x * dz).sum()
fy = (z * dy + y * dz).sum()
return fx, fy
elif polarization_type == 'scalar':
if hasattr(dx, 'shape'):
fb = (x * dx + y * dy).sum(axis=0).astype(ttype)
fl = (z * dz).sum(axis=0)
else:
fb = (x * dx + y * dy).sum()
fl = (z * dz).sum()
return fb, fl
[docs]
def time_delay_from_earth_center(self, right_ascension, declination, t_gps):
"""Return the time delay from the earth center
"""
return self.time_delay_from_location(np.array([0, 0, 0]),
right_ascension,
declination,
t_gps)
[docs]
def time_delay_from_location(self, other_location, right_ascension,
declination, t_gps):
"""Return the time delay from the given location to detector for
a signal with the given sky location
In other words return `t1 - t2` where `t1` is the
arrival time in this detector and `t2` is the arrival time in the
other location.
Parameters
----------
other_location : numpy.ndarray of coordinates
A detector instance.
right_ascension : float
The right ascension (in rad) of the signal.
declination : float
The declination (in rad) of the signal.
t_gps : float
The GPS time (in s) of the signal.
Returns
-------
float
The arrival time difference between the detectors.
"""
ra_angle = self.gmst_estimate(t_gps) - right_ascension
cosd = cos(declination)
e0 = cosd * cos(ra_angle)
e1 = cosd * -sin(ra_angle)
e2 = sin(declination)
ehat = np.array([e0, e1, e2], dtype=object)
dx = other_location - self.location
return dx.dot(ehat).astype(np.float64) / constants.c.value
[docs]
def time_delay_from_detector(self, other_detector, right_ascension,
declination, t_gps):
"""Return the time delay from the given to detector for a signal with
the given sky location; i.e. return `t1 - t2` where `t1` is the
arrival time in this detector and `t2` is the arrival time in the
other detector. Note that this would return the same value as
`time_delay_from_earth_center` if `other_detector` was geocentric.
Parameters
----------
other_detector : detector.Detector
A detector instance.
right_ascension : float
The right ascension (in rad) of the signal.
declination : float
The declination (in rad) of the signal.
t_gps : float
The GPS time (in s) of the signal.
Returns
-------
float
The arrival time difference between the detectors.
"""
return self.time_delay_from_location(other_detector.location,
right_ascension,
declination,
t_gps)
[docs]
def project_wave(self, hp, hc, ra, dec, polarization,
method='lal',
reference_time=None):
"""Return the strain of a waveform as measured by the detector.
Apply the time shift for the given detector relative to the assumed
geocentric frame and apply the antenna patterns to the plus and cross
polarizations.
Parameters
----------
hp: pycbc.types.TimeSeries
Plus polarization of the GW
hc: pycbc.types.TimeSeries
Cross polarization of the GW
ra: float
Right ascension of source location
dec: float
Declination of source location
polarization: float
Polarization angle of the source
method: {'lal', 'constant', 'vary_polarization'}
The method to use for projecting the polarizations into the
detector frame. Default is 'lal'.
reference_time: float, Optional
The time to use as, a reference for some methods of projection.
Used by 'constant' and 'vary_polarization' methods. Uses average
time if not provided.
"""
# The robust and most fefature rich method which includes
# time changing antenna patterns and doppler shifts due to the
# earth rotation and orbit
if method == 'lal':
import lalsimulation
h_lal = lalsimulation.SimDetectorStrainREAL8TimeSeries(
hp.astype(np.float64).lal(), hc.astype(np.float64).lal(),
ra, dec, polarization, self.lal())
ts = TimeSeries(
h_lal.data.data, delta_t=h_lal.deltaT, epoch=h_lal.epoch,
dtype=np.float64, copy=False)
# 'constant' assume fixed orientation relative to source over the
# duration of the signal, accurate for short duration signals
# 'fixed_polarization' applies only time changing orientation
# but no doppler corrections
elif method in ['constant', 'vary_polarization']:
if reference_time is not None:
rtime = reference_time
else:
# In many cases, one should set the reference time if using
# this method as we don't know where the signal is within
# the given time series. If not provided, we'll choose
# the midpoint time.
rtime = (float(hp.end_time) + float(hp.start_time)) / 2.0
if method == 'constant':
time = rtime
elif method == 'vary_polarization':
if (not isinstance(hp, TimeSeries) or
not isinstance(hc, TimeSeries)):
raise TypeError('Waveform polarizations must be given'
' as time series for this method')
# this is more granular than needed, may be optimized later
# assume earth rotation in ~30 ms needed for earth ceneter
# to detector is completely negligible.
time = hp.sample_times.numpy()
fp, fc = self.antenna_pattern(ra, dec, polarization, time)
dt = self.time_delay_from_earth_center(ra, dec, rtime)
ts = fp * hp + fc * hc
ts.start_time = float(ts.start_time) + dt
# add in only the correction for the time variance in the polarization
# due to the earth's rotation, no doppler correction applied
else:
raise ValueError("Unkown projection method {}".format(method))
return ts
[docs]
def optimal_orientation(self, t_gps):
"""Return the optimal orientation in right ascension and declination
for a given GPS time.
Parameters
----------
t_gps: float
Time in gps seconds
Returns
-------
ra: float
Right ascension that is optimally oriented for the detector
dec: float
Declination that is optimally oriented for the detector
"""
ra = self.longitude + (self.gmst_estimate(t_gps) % (2.0*np.pi))
dec = self.latitude
return ra, dec
[docs]
def get_icrs_pos(self):
""" Transforms GCRS frame to ICRS frame
Returns
----------
loc: numpy.ndarray shape (3,1) units: AU
ICRS coordinates in cartesian system
"""
loc = self.location
loc = coordinates.SkyCoord(x=loc[0], y=loc[1], z=loc[2], unit=units.m,
frame='gcrs', representation_type='cartesian').transform_to('icrs')
loc.representation_type = 'cartesian'
conv = np.float32(((loc.x.unit/units.AU).decompose()).to_string())
loc = np.array([np.float32(loc.x), np.float32(loc.y),
np.float32(loc.z)])*conv
return loc
[docs]
def effective_distance(self, distance, ra, dec, pol, time, inclination):
""" Distance scaled to account for amplitude factors
The effective distance of the source. This scales the distance so that
the amplitude is equal to a source which is optimally oriented with
respect to the detector. For fixed detector-frame intrinsic parameters
this is a measure of the expected signal strength.
Parameters
----------
distance: float
Source luminosity distance in megaparsecs
ra: float
The right ascension in radians
dec: float
The declination in radians
pol: float
Polarization angle of the gravitational wave in radians
time: float
GPS time in seconds
inclination:
The inclination of the binary's orbital plane
Returns
-------
eff_dist: float
The effective distance of the source
"""
fp, fc = self.antenna_pattern(ra, dec, pol, time)
ic = np.cos(inclination)
ip = 0.5 * (1. + ic * ic)
scale = ((fp * ip) ** 2.0 + (fc * ic) ** 2.0) ** 0.5
return distance / scale
[docs]
def overhead_antenna_pattern(right_ascension, declination, polarization):
"""Return the antenna pattern factors F+ and Fx as a function of sky
location and polarization angle for a hypothetical interferometer located
at the north pole. Angles are in radians. Declinations of ±π/2 correspond
to the normal to the detector plane (i.e. overhead and underneath) while
the point with zero right ascension and declination is the direction
of one of the interferometer arms.
Parameters
----------
right_ascension: float
declination: float
polarization: float
Returns
-------
f_plus: float
f_cros: float
"""
# convert from declination coordinate to polar (angle dropped from north axis)
theta = np.pi / 2.0 - declination
f_plus = - (1.0/2.0) * (1.0 + cos(theta)*cos(theta)) * \
cos (2.0 * right_ascension) * cos (2.0 * polarization) - \
cos(theta) * sin(2.0*right_ascension) * sin (2.0 * polarization)
f_cross = (1.0/2.0) * (1.0 + cos(theta)*cos(theta)) * \
cos (2.0 * right_ascension) * sin (2.0* polarization) - \
cos(theta) * sin(2.0*right_ascension) * cos (2.0 * polarization)
return f_plus, f_cross
[docs]
def ppdets(ifos, separator=', '):
"""Pretty-print a list (or set) of detectors: return a string listing
the given detectors alphabetically and separated by the given string
(comma by default).
"""
if ifos:
return separator.join(sorted(ifos))
return 'no detectors'
__all__ = ['Detector', 'get_available_detectors',
'get_available_lal_detectors',
'gmst_accurate', 'add_detector_on_earth',
'single_arm_frequency_response', 'ppdets',
'overhead_antenna_pattern', 'load_detector_config',
'_ground_detectors',]