Source code for pycbc.detector.ground

# -*- coding: UTF-8 -*-

# Copyright (C) 2012  Alex Nitz
#
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.


#
# =============================================================================
#
#                                   Preamble
#
# =============================================================================
#
"""This module provides utilities for calculating detector responses and timing
between ground-based observatories.
"""
import os
import logging
import numpy as np
from numpy import cos, sin

import lal
from astropy.time import Time
from astropy import constants, coordinates, units
from astropy.coordinates.matrix_utilities import rotation_matrix
from astropy.units.si import sday, meter

import pycbc.libutils
from pycbc.types import TimeSeries
from pycbc.types.config import InterpolatingConfigParser

logger = logging.getLogger('pycbc.detector')

# Response functions are modelled after those in lalsuite and as also
# presented in https://arxiv.org/pdf/gr-qc/0008066.pdf

[docs] def gmst_accurate(gps_time): gmst = Time(gps_time, format='gps', scale='utc', location=(0, 0)).sidereal_time('mean').rad return gmst
[docs] def get_available_detectors(): """ List the available detectors """ dets = list(_ground_detectors.keys()) return dets
[docs] def get_available_lal_detectors(): """Return list of detectors known in the currently sourced lalsuite. This function will query lalsuite about which detectors are known to lalsuite. Detectors are identified by a two character string e.g. 'K1', but also by a longer, and clearer name, e.g. KAGRA. This function returns both. As LAL doesn't really expose this functionality we have to make some assumptions about how this information is stored in LAL. Therefore while we hope this function will work correctly, it's possible it will need updating in the future. Better if lal would expose this information properly. """ ld = lal.__dict__ known_lal_names = [j for j in ld.keys() if "DETECTOR_PREFIX" in j] known_prefixes = [ld[k] for k in known_lal_names] known_names = [ld[k.replace('PREFIX', 'NAME')] for k in known_lal_names] return list(zip(known_prefixes, known_names))
_ground_detectors = {}
[docs] def add_detector_on_earth(name, longitude, latitude, yangle=0, xangle=None, height=0, xlength=4000, ylength=4000, xaltitude=0, yaltitude=0): """ Add a new detector on the earth Parameters ---------- name: str two-letter name to identify the detector longitude: float Longitude in radians using geodetic coordinates of the detector latitude: float Latitude in radians using geodetic coordinates of the detector yangle: float Azimuthal angle of the y-arm (angle drawn from pointing north) xangle: float Azimuthal angle of the x-arm (angle drawn from point north). If not set we assume a right angle detector following the right-hand rule. xaltitude: float The altitude angle of the x-arm measured from the local horizon. yaltitude: float The altitude angle of the y-arm measured from the local horizon. height: float The height in meters of the detector above the standard reference ellipsoidal earth """ if xangle is None: # assume right angle detector if no separate xarm direction given xangle = yangle + np.pi / 2.0 # baseline response of a single arm pointed in the -X direction resp = np.array([[-1, 0, 0], [0, 0, 0], [0, 0, 0]]) rm2 = rotation_matrix(-longitude * units.rad, 'z') rm1 = rotation_matrix(-1.0 * (np.pi / 2.0 - latitude) * units.rad, 'y') # Calculate response in earth centered coordinates # by rotation of response in coordinates aligned # with the detector arms resps = [] vecs = [] for angle, azi in [(yangle, yaltitude), (xangle, xaltitude)]: rm0 = rotation_matrix(angle * units.rad, 'z') rmN = rotation_matrix(-azi * units.rad, 'y') rm = rm2 @ rm1 @ rm0 @ rmN # apply rotation resps.append(rm @ resp @ rm.T / 2.0) vecs.append(rm @ np.array([-1, 0, 0])) full_resp = (resps[0] - resps[1]) loc = coordinates.EarthLocation.from_geodetic(longitude * units.rad, latitude * units.rad, height=height*units.meter) loc = np.array([loc.x.value, loc.y.value, loc.z.value]) _ground_detectors[name] = {'location': loc, 'response': full_resp, 'xresp': resps[1], 'yresp': resps[0], 'xvec': vecs[1], 'yvec': vecs[0], 'yangle': yangle, 'xangle': xangle, 'height': height, 'xaltitude': xaltitude, 'yaltitude': yaltitude, 'ylength': ylength, 'xlength': xlength, }
# Notation matches # Eq 4 of https://link.aps.org/accepted/10.1103/PhysRevD.96.084004
[docs] def single_arm_frequency_response(f, n, arm_length): """ The relative amplitude factor of the arm response due to signal delay. This is relevant where the long-wavelength approximation no longer applies) """ n = np.clip(n, -0.999, 0.999) phase = arm_length / constants.c.value * 2.0j * np.pi * f a = 1.0 / 4.0 / phase b = (1 - np.exp(-phase * (1 - n))) / (1 - n) c = np.exp(-2.0 * phase) * (1 - np.exp(phase * (1 + n))) / (1 + n) return a * (b - c) * 2.0 # We'll make this relative to the static resp
[docs] def load_detector_config(config_files): """ Add custom detectors from a configuration file Parameters ---------- config_files: str or list of strs The config file(s) which specify new detectors """ methods = {'earth_normal': (add_detector_on_earth, ['longitude', 'latitude'])} conf = InterpolatingConfigParser(config_files) dets = conf.get_subsections('detector') for det in dets: kwds = dict(conf.items('detector-{}'.format(det))) try: method, arg_names = methods[kwds.pop('method')] except KeyError: raise ValueError("Missing or unkown method, " "options are {}".format(methods.keys())) for k in kwds: kwds[k] = float(kwds[k]) try: args = [kwds.pop(arg) for arg in arg_names] except KeyError as e: raise ValueError("missing required detector argument" " {} are required".format(arg_names)) method(det.upper(), *args, **kwds)
# prepopulate using detectors hardcoded into lalsuite for pref, name in get_available_lal_detectors(): lalsim = pycbc.libutils.import_optional('lalsimulation') lal_det = lalsim.DetectorPrefixToLALDetector(pref).frDetector add_detector_on_earth(pref, lal_det.vertexLongitudeRadians, lal_det.vertexLatitudeRadians, height=lal_det.vertexElevation, xangle=lal_det.xArmAzimuthRadians, yangle=lal_det.yArmAzimuthRadians, xlength=lal_det.xArmMidpoint * 2, ylength=lal_det.yArmMidpoint * 2, xaltitude=lal_det.xArmAltitudeRadians, yaltitude=lal_det.yArmAltitudeRadians, ) # autoload detector config files if 'PYCBC_DETECTOR_CONFIG' in os.environ: load_detector_config(os.environ['PYCBC_DETECTOR_CONFIG'].split(':'))
[docs] class Detector(object): """A gravitational wave detector """ def __init__(self, detector_name, reference_time=1126259462.0): """ Create class representing a gravitational-wave detector Parameters ---------- detector_name: str The two-character detector string, i.e. H1, L1, V1, K1, I1 reference_time: float Default is time of GW150914. In this case, the earth's rotation will be estimated from a reference time. If 'None', we will calculate the time for each gps time requested explicitly using a slower but higher precision method. """ self.name = str(detector_name) lal_detectors = [pfx for pfx, name in get_available_lal_detectors()] if detector_name in _ground_detectors: self.info = _ground_detectors[detector_name] self.response = self.info['response'] self.location = self.info['location'] else: raise ValueError("Unkown detector {}".format(detector_name)) loc = coordinates.EarthLocation(self.location[0], self.location[1], self.location[2], unit=meter) self.latitude = loc.lat.rad self.longitude = loc.lon.rad self.reference_time = reference_time self.sday = None self.gmst_reference = None
[docs] def set_gmst_reference(self): if self.reference_time is not None: self.sday = float(sday.si.scale) self.gmst_reference = gmst_accurate(self.reference_time) else: raise RuntimeError("Can't get accurate sidereal time without GPS " "reference time!")
[docs] def lal(self): """ Return lal data type detector instance """ import lal d = lal.FrDetector() d.vertexLongitudeRadians = self.longitude d.vertexLatitudeRadians = self.latitude d.vertexElevation = self.info['height'] d.xArmAzimuthRadians = self.info['xangle'] d.yArmAzimuthRadians = self.info['yangle'] d.xArmAltitudeRadians = self.info['xaltitude'] d.yArmAltitudeRadians = self.info['yaltitude'] # This is somewhat abused by lalsimulation at the moment # to determine a filter kernel size. We set this only so that # value gets a similar number of samples as other detectors # it is used for nothing else d.yArmMidpoint = self.info['ylength'] / 2.0 d.xArmMidpoint = self.info['xlength'] / 2.0 x = lal.Detector() r = lal.CreateDetector(x, d, lal.LALDETECTORTYPE_IFODIFF) self._lal = r return r
[docs] def gmst_estimate(self, gps_time): if self.reference_time is None: return gmst_accurate(gps_time) if self.gmst_reference is None: self.set_gmst_reference() dphase = (gps_time - self.reference_time) / self.sday * (2.0 * np.pi) gmst = (self.gmst_reference + dphase) % (2.0 * np.pi) return gmst
[docs] def light_travel_time_to_detector(self, det): """ Return the light travel time from this detector Parameters ---------- det: Detector The other detector to determine the light travel time to. Returns ------- time: float The light travel time in seconds """ d = self.location - det.location return float(d.dot(d)**0.5 / constants.c.value)
[docs] def antenna_pattern(self, right_ascension, declination, polarization, t_gps, frequency=0, polarization_type='tensor'): """Return the detector response. Parameters ---------- right_ascension: float or numpy.ndarray The right ascension of the source declination: float or numpy.ndarray The declination of the source polarization: float or numpy.ndarray The polarization angle of the source polarization_type: string flag: Tensor, Vector or Scalar The gravitational wave polarizations. Default: 'Tensor' Returns ------- fplus(default) or fx or fb : float or numpy.ndarray The plus or vector-x or breathing polarization factor for this sky location / orientation fcross(default) or fy or fl : float or numpy.ndarray The cross or vector-y or longitudnal polarization factor for this sky location / orientation """ if isinstance(t_gps, lal.LIGOTimeGPS): t_gps = float(t_gps) gha = self.gmst_estimate(t_gps) - right_ascension cosgha = cos(gha) singha = sin(gha) cosdec = cos(declination) sindec = sin(declination) cospsi = cos(polarization) sinpsi = sin(polarization) if frequency: e0 = cosdec * cosgha e1 = cosdec * -singha e2 = sin(declination) nhat = np.array([e0, e1, e2], dtype=object) nx = nhat.dot(self.info['xvec']) ny = nhat.dot(self.info['yvec']) rx = single_arm_frequency_response(frequency, nx, self.info['xlength']) ry = single_arm_frequency_response(frequency, ny, self.info['ylength']) resp = ry * self.info['yresp'] - rx * self.info['xresp'] ttype = np.complex128 else: resp = self.response ttype = np.float64 x0 = -cospsi * singha - sinpsi * cosgha * sindec x1 = -cospsi * cosgha + sinpsi * singha * sindec x2 = sinpsi * cosdec x = np.array([x0, x1, x2], dtype=object) dx = resp.dot(x) y0 = sinpsi * singha - cospsi * cosgha * sindec y1 = sinpsi * cosgha + cospsi * singha * sindec y2 = cospsi * cosdec y = np.array([y0, y1, y2], dtype=object) dy = resp.dot(y) if polarization_type != 'tensor': z0 = -cosdec * cosgha z1 = cosdec * singha z2 = -sindec z = np.array([z0, z1, z2], dtype=object) dz = resp.dot(z) if polarization_type == 'tensor': if hasattr(dx, 'shape'): fplus = (x * dx - y * dy).sum(axis=0).astype(ttype) fcross = (x * dy + y * dx).sum(axis=0).astype(ttype) else: fplus = (x * dx - y * dy).sum() fcross = (x * dy + y * dx).sum() return fplus, fcross elif polarization_type == 'vector': if hasattr(dx, 'shape'): fx = (z * dx + x * dz).sum(axis=0).astype(ttype) fy = (z * dy + y * dz).sum(axis=0).astype(ttype) else: fx = (z * dx + x * dz).sum() fy = (z * dy + y * dz).sum() return fx, fy elif polarization_type == 'scalar': if hasattr(dx, 'shape'): fb = (x * dx + y * dy).sum(axis=0).astype(ttype) fl = (z * dz).sum(axis=0) else: fb = (x * dx + y * dy).sum() fl = (z * dz).sum() return fb, fl
[docs] def time_delay_from_earth_center(self, right_ascension, declination, t_gps): """Return the time delay from the earth center """ return self.time_delay_from_location(np.array([0, 0, 0]), right_ascension, declination, t_gps)
[docs] def time_delay_from_location(self, other_location, right_ascension, declination, t_gps): """Return the time delay from the given location to detector for a signal with the given sky location In other words return `t1 - t2` where `t1` is the arrival time in this detector and `t2` is the arrival time in the other location. Parameters ---------- other_location : numpy.ndarray of coordinates A detector instance. right_ascension : float The right ascension (in rad) of the signal. declination : float The declination (in rad) of the signal. t_gps : float The GPS time (in s) of the signal. Returns ------- float The arrival time difference between the detectors. """ ra_angle = self.gmst_estimate(t_gps) - right_ascension cosd = cos(declination) e0 = cosd * cos(ra_angle) e1 = cosd * -sin(ra_angle) e2 = sin(declination) ehat = np.array([e0, e1, e2], dtype=object) dx = other_location - self.location return dx.dot(ehat).astype(np.float64) / constants.c.value
[docs] def time_delay_from_detector(self, other_detector, right_ascension, declination, t_gps): """Return the time delay from the given to detector for a signal with the given sky location; i.e. return `t1 - t2` where `t1` is the arrival time in this detector and `t2` is the arrival time in the other detector. Note that this would return the same value as `time_delay_from_earth_center` if `other_detector` was geocentric. Parameters ---------- other_detector : detector.Detector A detector instance. right_ascension : float The right ascension (in rad) of the signal. declination : float The declination (in rad) of the signal. t_gps : float The GPS time (in s) of the signal. Returns ------- float The arrival time difference between the detectors. """ return self.time_delay_from_location(other_detector.location, right_ascension, declination, t_gps)
[docs] def project_wave(self, hp, hc, ra, dec, polarization, method='lal', reference_time=None): """Return the strain of a waveform as measured by the detector. Apply the time shift for the given detector relative to the assumed geocentric frame and apply the antenna patterns to the plus and cross polarizations. Parameters ---------- hp: pycbc.types.TimeSeries Plus polarization of the GW hc: pycbc.types.TimeSeries Cross polarization of the GW ra: float Right ascension of source location dec: float Declination of source location polarization: float Polarization angle of the source method: {'lal', 'constant', 'vary_polarization'} The method to use for projecting the polarizations into the detector frame. Default is 'lal'. reference_time: float, Optional The time to use as, a reference for some methods of projection. Used by 'constant' and 'vary_polarization' methods. Uses average time if not provided. """ # The robust and most fefature rich method which includes # time changing antenna patterns and doppler shifts due to the # earth rotation and orbit if method == 'lal': import lalsimulation h_lal = lalsimulation.SimDetectorStrainREAL8TimeSeries( hp.astype(np.float64).lal(), hc.astype(np.float64).lal(), ra, dec, polarization, self.lal()) ts = TimeSeries( h_lal.data.data, delta_t=h_lal.deltaT, epoch=h_lal.epoch, dtype=np.float64, copy=False) # 'constant' assume fixed orientation relative to source over the # duration of the signal, accurate for short duration signals # 'fixed_polarization' applies only time changing orientation # but no doppler corrections elif method in ['constant', 'vary_polarization']: if reference_time is not None: rtime = reference_time else: # In many cases, one should set the reference time if using # this method as we don't know where the signal is within # the given time series. If not provided, we'll choose # the midpoint time. rtime = (float(hp.end_time) + float(hp.start_time)) / 2.0 if method == 'constant': time = rtime elif method == 'vary_polarization': if (not isinstance(hp, TimeSeries) or not isinstance(hc, TimeSeries)): raise TypeError('Waveform polarizations must be given' ' as time series for this method') # this is more granular than needed, may be optimized later # assume earth rotation in ~30 ms needed for earth ceneter # to detector is completely negligible. time = hp.sample_times.numpy() fp, fc = self.antenna_pattern(ra, dec, polarization, time) dt = self.time_delay_from_earth_center(ra, dec, rtime) ts = fp * hp + fc * hc ts.start_time = float(ts.start_time) + dt # add in only the correction for the time variance in the polarization # due to the earth's rotation, no doppler correction applied else: raise ValueError("Unkown projection method {}".format(method)) return ts
[docs] def optimal_orientation(self, t_gps): """Return the optimal orientation in right ascension and declination for a given GPS time. Parameters ---------- t_gps: float Time in gps seconds Returns ------- ra: float Right ascension that is optimally oriented for the detector dec: float Declination that is optimally oriented for the detector """ ra = self.longitude + (self.gmst_estimate(t_gps) % (2.0*np.pi)) dec = self.latitude return ra, dec
[docs] def get_icrs_pos(self): """ Transforms GCRS frame to ICRS frame Returns ---------- loc: numpy.ndarray shape (3,1) units: AU ICRS coordinates in cartesian system """ loc = self.location loc = coordinates.SkyCoord(x=loc[0], y=loc[1], z=loc[2], unit=units.m, frame='gcrs', representation_type='cartesian').transform_to('icrs') loc.representation_type = 'cartesian' conv = np.float32(((loc.x.unit/units.AU).decompose()).to_string()) loc = np.array([np.float32(loc.x), np.float32(loc.y), np.float32(loc.z)])*conv return loc
[docs] def effective_distance(self, distance, ra, dec, pol, time, inclination): """ Distance scaled to account for amplitude factors The effective distance of the source. This scales the distance so that the amplitude is equal to a source which is optimally oriented with respect to the detector. For fixed detector-frame intrinsic parameters this is a measure of the expected signal strength. Parameters ---------- distance: float Source luminosity distance in megaparsecs ra: float The right ascension in radians dec: float The declination in radians pol: float Polarization angle of the gravitational wave in radians time: float GPS time in seconds inclination: The inclination of the binary's orbital plane Returns ------- eff_dist: float The effective distance of the source """ fp, fc = self.antenna_pattern(ra, dec, pol, time) ic = np.cos(inclination) ip = 0.5 * (1. + ic * ic) scale = ((fp * ip) ** 2.0 + (fc * ic) ** 2.0) ** 0.5 return distance / scale
[docs] def overhead_antenna_pattern(right_ascension, declination, polarization): """Return the antenna pattern factors F+ and Fx as a function of sky location and polarization angle for a hypothetical interferometer located at the north pole. Angles are in radians. Declinations of ±π/2 correspond to the normal to the detector plane (i.e. overhead and underneath) while the point with zero right ascension and declination is the direction of one of the interferometer arms. Parameters ---------- right_ascension: float declination: float polarization: float Returns ------- f_plus: float f_cros: float """ # convert from declination coordinate to polar (angle dropped from north axis) theta = np.pi / 2.0 - declination f_plus = - (1.0/2.0) * (1.0 + cos(theta)*cos(theta)) * \ cos (2.0 * right_ascension) * cos (2.0 * polarization) - \ cos(theta) * sin(2.0*right_ascension) * sin (2.0 * polarization) f_cross = (1.0/2.0) * (1.0 + cos(theta)*cos(theta)) * \ cos (2.0 * right_ascension) * sin (2.0* polarization) - \ cos(theta) * sin(2.0*right_ascension) * cos (2.0 * polarization) return f_plus, f_cross
[docs] def ppdets(ifos, separator=', '): """Pretty-print a list (or set) of detectors: return a string listing the given detectors alphabetically and separated by the given string (comma by default). """ if ifos: return separator.join(sorted(ifos)) return 'no detectors'
__all__ = ['Detector', 'get_available_detectors', 'get_available_lal_detectors', 'gmst_accurate', 'add_detector_on_earth', 'single_arm_frequency_response', 'ppdets', 'overhead_antenna_pattern', 'load_detector_config', '_ground_detectors',]