Source code for pycbc.inference.gelman_rubin

# Copyright (C) 2017  Christopher M. Biwer
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
""" This modules provides functions for evaluating the Gelman-Rubin convergence
diagnostic statistic.
"""

import numpy


[docs] def walk(chains, start, end, step): """ Calculates Gelman-Rubin conervergence statistic along chains of data. This function will advance along the chains and calculate the statistic for each step. Parameters ---------- chains : iterable An iterable of numpy.array instances that contain the samples for each chain. Each chain has shape (nparameters, niterations). start : float Start index of blocks to calculate all statistics. end : float Last index of blocks to calculate statistics. step : float Step size to take for next block. Returns ------- starts : numpy.array 1-D array of start indexes of calculations. ends : numpy.array 1-D array of end indexes of caluclations. stats : numpy.array Array with convergence statistic. It has shape (nparameters, ncalculations). """ # get number of chains, parameters, and iterations chains = numpy.array(chains) _, nparameters, _ = chains.shape # get end index of blocks ends = numpy.arange(start, end, step) stats = numpy.zeros((nparameters, len(ends))) # get start index of blocks starts = numpy.array(len(ends) * [start]) # loop over end indexes and calculate statistic for i, e in enumerate(ends): tmp = chains[:, :, 0:e] stats[:, i] = gelman_rubin(tmp) return starts, ends, stats
[docs] def gelman_rubin(chains, auto_burn_in=True): """ Calculates the univariate Gelman-Rubin convergence statistic which compares the evolution of multiple chains in a Markov-Chain Monte Carlo process and computes their difference to determine their convergence. The between-chain and within-chain variances are computed for each sampling parameter, and a weighted combination of the two is used to determine the convergence. As the chains converge, the point scale reduction factor should go to 1. Parameters ---------- chains : iterable An iterable of numpy.array instances that contain the samples for each chain. Each chain has shape (nparameters, niterations). auto_burn_in : bool If True, then only use later half of samples provided. Returns ------- psrf : numpy.array A numpy.array of shape (nparameters) that has the point estimates of the potential scale reduction factor. """ # remove first half of samples # this will have shape (nchains, nparameters, niterations) if auto_burn_in: _, _, niterations = numpy.array(chains).shape chains = numpy.array([chain[:, niterations // 2 + 1:] for chain in chains]) # get number of chains, parameters, and iterations chains = numpy.array(chains) nchains, nparameters, niterations = chains.shape # calculate the covariance matrix for each chain # this will have shape (nchains, nparameters, nparameters) chains_covs = numpy.array([numpy.cov(chain) for chain in chains]) if nparameters == 1: chains_covs = chains_covs.reshape((nchains, 1, 1)) # calculate W the within-chain variance # this will have shape (nparameters, nparameters) w = numpy.zeros(chains_covs[0].shape) for i, row in enumerate(chains_covs[0]): for j, _ in enumerate(row): w[i, j] = numpy.mean(chains_covs[:, i, j]) if nparameters == 1: w = w.reshape((1, 1)) # calculate B the between-chain variance # this will have shape (nparameters, nparameters) means = numpy.zeros((nparameters, nchains)) for i, chain in enumerate(chains): means[:, i] = numpy.mean(chain, axis=1).transpose() b = niterations * numpy.cov(means) if nparameters == 1: b = b.reshape((1, 1)) # get diagonal elements of W and B # these will have shape (nparameters) w_diag = numpy.diag(w) b_diag = numpy.diag(b) # get variance for each chain # this will have shape (nparameters, nchains) var = numpy.zeros((nparameters, nchains)) for i, chain_cov in enumerate(chains_covs): var[:, i] = numpy.diag(chain_cov) # get mean of means # this will have shape (nparameters) mu_hat = numpy.mean(means, axis=1) # get variance of variances # this will have shape (nparameters) s = numpy.var(var, axis=1) # get V the combined variance of all chains # this will have shape (nparameters) v = ((niterations - 1.) * w_diag / niterations + (1. + 1. / nchains) * b_diag / niterations) # get factors in variance of V calculation # this will have shape (nparameters) k = 2 * b_diag**2 / (nchains - 1) mid_term = numpy.cov( var, means**2)[nparameters:2*nparameters, 0:nparameters].T end_term = numpy.cov( var, means)[nparameters:2*nparameters, 0:nparameters].T wb = niterations / nchains * numpy.diag(mid_term - 2 * mu_hat * end_term) # get variance of V # this will have shape (nparameters) var_v = ( (niterations - 1.) ** 2 * s + (1. + 1. / nchains) ** 2 * k + 2. * (niterations - 1.) * (1. + 1. / nchains) * wb ) / niterations**2 # get degrees of freedom # this will have shape (nparameters) dof = (2. * v**2) / var_v # more degrees of freedom factors # this will have shape (nparameters) df_adj = (dof + 3.) / (dof + 1.) # estimate R # this will have shape (nparameters) r2_fixed = (niterations - 1.) / niterations r2_random = (1. + 1. / nchains) * (1. / niterations) * (b_diag / w_diag) r2_estimate = r2_fixed + r2_random # calculate PSRF the potential scale reduction factor # this will have shape (nparameters) psrf = numpy.sqrt(r2_estimate * df_adj) return psrf