Source code for pycbc.inference.sampler.dynesty

# Copyright (C) 2019  Collin Capano, Sumit Kumar, Prayush Kumar
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.


#
# =============================================================================
#
#                                   Preamble
#
# =============================================================================
#
"""
This modules provides classes and functions for using the dynesty sampler
packages for parameter estimation.
"""

import logging
import time
import numpy
import dynesty, dynesty.dynesty, dynesty.nestedsamplers
from pycbc.pool import choose_pool
from dynesty import utils as dyfunc
from pycbc.inference.io import (DynestyFile, validate_checkpoint_files,
                                loadfile)
from .base import (BaseSampler, setup_output)
from .base_mcmc import get_optional_arg_from_config
from .base_cube import setup_calls
from .. import models


#
# =============================================================================
#
#                                   Samplers
#
# =============================================================================
#

[docs] class DynestySampler(BaseSampler): """This class is used to construct an Dynesty sampler from the dynesty package. Parameters ---------- model : model A model from ``pycbc.inference.models``. nlive : int Number of live points to use in sampler. pool : function with map, Optional A provider of a map function that allows a function call to be run over multiple sets of arguments and possibly maps them to cores/nodes/etc. """ name = "dynesty" _io = DynestyFile def __init__(self, model, nlive, nprocesses=1, checkpoint_time_interval=None, maxcall=None, loglikelihood_function=None, use_mpi=False, no_save_state=False, run_kwds=None, extra_kwds=None, internal_kwds=None, **kwargs): self.model = model self.no_save_state = no_save_state log_likelihood_call, prior_call = setup_calls( model, loglikelihood_function=loglikelihood_function, copy_prior=True) # Set up the pool self.pool = choose_pool(mpi=use_mpi, processes=nprocesses) self.maxcall = maxcall self.checkpoint_time_interval = checkpoint_time_interval self.run_kwds = {} if run_kwds is None else run_kwds self.extra_kwds = {} if extra_kwds is None else extra_kwds self.internal_kwds = {} if internal_kwds is None else internal_kwds self.nlive = nlive self.names = model.sampling_params self.ndim = len(model.sampling_params) self.checkpoint_file = None # Enable checkpointing if checkpoint_time_interval is set in config # file in sampler section if self.checkpoint_time_interval: self.run_with_checkpoint = True if self.maxcall is None: self.maxcall = 5000 * self.pool.size logging.info("Checkpointing enabled, will verify every %s calls" " and try to checkpoint every %s seconds", self.maxcall, self.checkpoint_time_interval) else: self.run_with_checkpoint = False # Check for cyclic boundaries periodic = [] cyclic = self.model.prior_distribution.cyclic for i, param in enumerate(self.variable_params): if param in cyclic: logging.info('Param: %s will be cyclic', param) periodic.append(i) if len(periodic) == 0: periodic = None # Check for reflected boundaries. Dynesty only supports # reflection on both min and max of boundary. reflective = [] reflect = self.model.prior_distribution.well_reflected for i, param in enumerate(self.variable_params): if param in reflect: logging.info("Param: %s will be well reflected", param) reflective.append(i) if len(reflective) == 0: reflective = None if 'sample' in extra_kwds: if 'rwalk2' in extra_kwds['sample']: dynesty.dynesty._SAMPLING["rwalk"] = sample_rwalk_mod dynesty.nestedsamplers._SAMPLING["rwalk"] = sample_rwalk_mod extra_kwds['sample'] = 'rwalk' if self.nlive < 0: # Interpret a negative input value for the number of live points # (which is clearly an invalid input in all senses) # as the desire to dynamically determine that number self._sampler = dynesty.DynamicNestedSampler(log_likelihood_call, prior_call, self.ndim, pool=self.pool, reflective=reflective, periodic=periodic, **extra_kwds) self.run_with_checkpoint = False logging.info("Checkpointing not currently supported with" "DYNAMIC nested sampler") else: self._sampler = dynesty.NestedSampler(log_likelihood_call, prior_call, self.ndim, nlive=self.nlive, reflective=reflective, periodic=periodic, pool=self.pool, **extra_kwds) self._sampler.kwargs.update(internal_kwds) # properties of the internal sampler which should not be pickled self.no_pickle = ['loglikelihood', 'prior_transform', 'propose_point', 'update_proposal', '_UPDATE', '_PROPOSE', 'evolve_point', 'use_pool', 'queue_size', 'use_pool_ptform', 'use_pool_logl', 'use_pool_evolve', 'use_pool_update', 'pool', 'M']
[docs] def run(self): diff_niter = 1 if self.run_with_checkpoint is True: n_checkpointing = 1 t0 = time.time() it = self._sampler.it logging.info('Starting from iteration: %s', it) while diff_niter != 0: self._sampler.run_nested(maxcall=self.maxcall, **self.run_kwds) delta_t = time.time() - t0 diff_niter = self._sampler.it - it logging.info("Checking if we should checkpoint: %.2f s", delta_t) if delta_t >= self.checkpoint_time_interval: logging.info('Checkpointing N={}'.format(n_checkpointing)) self.checkpoint() n_checkpointing += 1 t0 = time.time() it = self._sampler.it else: self._sampler.run_nested(**self.run_kwds)
@property def io(self): return self._io @property def niterations(self): return len(tuple(self.samples.values())[0])
[docs] @classmethod def from_config(cls, cp, model, output_file=None, nprocesses=1, use_mpi=False, loglikelihood_function=None): """Loads the sampler from the given config file. Many options are directly passed to the underlying dynesty sampler, see the official dynesty documentation for more details on these. The following options are retrieved in the ``[sampler]`` section: * ``name = STR``: Required. This must match the sampler's name. * ``maxiter = INT``: The maximum number of iterations to run. * ``dlogz = FLOAT``: The target dlogz stopping condition. * ``logl_max = FLOAT``: The maximum logl stopping condition. * ``n_effective = INT``: Target effective number of samples stopping condition * ``sample = STR``: The method to sample the space. Should be one of 'uniform', 'rwalk', 'rwalk2' (a modified version of rwalk), or 'slice'. * ``walk = INT``: Used for some of the walk methods. Sets the minimum number of steps to take when evolving a point. * ``maxmcmc = INT``: Used for some of the walk methods. Sets the maximum number of steps to take when evolving a point. * ``nact = INT``: used for some of the walk methods. Sets number of autorcorrelation lengths before terminating evolution of a point. * ``first_update_min_ncall = INT``: The minimum number of calls before updating the bounding region for the first time. * ``first_update_min_neff = FLOAT``: Don't update the the bounding region untill the efficiency drops below this value. * ``bound = STR``: The method of bounding of the prior volume. Should be one of 'single', 'balls', 'cubes', 'multi' or 'none'. * ``update_interval = INT``: Number of iterations between updating the bounding regions * ``enlarge = FLOAT``: Factor to enlarge the bonding region. * ``bootstrap = INT``: The number of bootstrap iterations to determine the enlargement factor. * ``maxcall = INT``: The maximum number of calls before checking if we should checkpoint * ``checkpoint_time_interval``: Sets the time in seconds between checkpointing. * ``loglikelihood-function``: The attribute of the model to use for the loglikelihood. If not provided, will default to ``loglikelihood``. Parameters ---------- cp : WorkflowConfigParser instance Config file object to parse. model : pycbc.inference.model.BaseModel instance The model to use. output_file : str, optional The name of the output file to checkpoint and write results to. nprocesses : int, optional The number of parallel processes to use. Default is 1. use_mpi : bool, optional Use MPI for parallelization. Default is False. Returns ------- DynestySampler : The sampler instance. """ section = "sampler" # check name assert cp.get(section, "name") == cls.name, ( "name in section [sampler] must match mine") # get the number of live points to use nlive = int(cp.get(section, "nlive")) loglikelihood_function = \ get_optional_arg_from_config(cp, section, 'loglikelihood-function') no_save_state = cp.has_option(section, 'no-save-state') # optional run_nested arguments for dynesty rargs = {'maxiter': int, 'dlogz': float, 'logl_max': float, 'n_effective': int, } # optional arguments for dynesty cargs = {'bound': str, 'bootstrap': int, 'enlarge': float, 'update_interval': float, 'sample': str, 'first_update_min_ncall': int, 'first_update_min_eff': float, 'walks': int, } # optional arguments that must be set internally internal_args = { 'maxmcmc': int, 'nact': int, } extra = {} run_extra = {} internal_extra = {} for args, argt in [(extra, cargs), (run_extra, rargs), (internal_extra, internal_args), ]: for karg in argt: if cp.has_option(section, karg): args[karg] = argt[karg](cp.get(section, karg)) #This arg needs to be a dict first_update = {} if 'first_update_min_ncall' in extra: first_update['min_ncall'] = extra.pop('first_update_min_ncall') logging.info('First update: min_ncall:%s', first_update['min_ncall']) if 'first_update_min_eff' in extra: first_update['min_eff'] = extra.pop('first_update_min_eff') logging.info('First update: min_eff:%s', first_update['min_eff']) extra['first_update'] = first_update # populate options for checkpointing checkpoint_time_interval = None maxcall = None if cp.has_option(section, 'checkpoint_time_interval'): ck_time = float(cp.get(section, 'checkpoint_time_interval')) checkpoint_time_interval = ck_time if cp.has_option(section, 'maxcall'): maxcall = int(cp.get(section, 'maxcall')) obj = cls(model, nlive=nlive, nprocesses=nprocesses, loglikelihood_function=loglikelihood_function, checkpoint_time_interval=checkpoint_time_interval, maxcall=maxcall, no_save_state=no_save_state, use_mpi=use_mpi, run_kwds=run_extra, extra_kwds=extra, internal_kwds=internal_extra,) setup_output(obj, output_file, check_nsamples=False) if not obj.new_checkpoint: obj.resume_from_checkpoint() return obj
[docs] def checkpoint(self): """Checkpoint function for dynesty sampler """ # Dynesty has its own __getstate__ which deletes # random state information and the pool saved = {} for key in self.no_pickle: if hasattr(self._sampler, key): saved[key] = getattr(self._sampler, key) setattr(self._sampler, key, None) for fn in [self.checkpoint_file, self.backup_file]: with self.io(fn, "a") as fp: # Write random state fp.write_random_state() # Write pickled data fp.write_pickled_data_into_checkpoint_file(self._sampler) self.write_results(fn) # Restore properties that couldn't be pickled if we are continuing for key in saved: setattr(self._sampler, key, saved[key])
[docs] def resume_from_checkpoint(self): try: with loadfile(self.checkpoint_file, 'r') as fp: sampler = fp.read_pickled_data_from_checkpoint_file() for key in sampler.__dict__: if key not in self.no_pickle: value = getattr(sampler, key) setattr(self._sampler, key, value) self.set_state_from_file(self.checkpoint_file) logging.info("Found valid checkpoint file: %s", self.checkpoint_file) except Exception as e: print(e) logging.info("Failed to load checkpoint file")
[docs] def set_state_from_file(self, filename): """Sets the state of the sampler back to the instance saved in a file. """ with self.io(filename, 'r') as fp: state = fp.read_random_state() # Dynesty handles most randomeness through rstate which is # pickled along with the class instance numpy.random.set_state(state)
[docs] def finalize(self): """Finalze and write it to the results file """ logz = self._sampler.results.logz[-1:][0] dlogz = self._sampler.results.logzerr[-1:][0] logging.info("log Z, dlog Z: {}, {}".format(logz, dlogz)) if self.no_save_state: self.write_results(self.checkpoint_file) else: self.checkpoint() logging.info("Validating checkpoint and backup files") checkpoint_valid = validate_checkpoint_files( self.checkpoint_file, self.backup_file, check_nsamples=False) if not checkpoint_valid: raise IOError("error writing to checkpoint file")
@property def samples(self): """Returns raw nested samples """ results = self._sampler.results samples = results.samples nest_samp = {} for i, param in enumerate(self.variable_params): nest_samp[param] = samples[:, i] nest_samp['logwt'] = results.logwt nest_samp['loglikelihood'] = results.logl return nest_samp
[docs] def set_initial_conditions(self, initial_distribution=None, samples_file=None): """Sets up the starting point for the sampler. Should also set the sampler's random state. """ pass
[docs] def write_results(self, filename): """Writes samples, model stats, acceptance fraction, and random state to the given file. Parameters ----------- filename : str The file to write to. The file is opened using the ``io`` class in an an append state. """ with self.io(filename, 'a') as fp: # Write nested samples fp.write_raw_samples(self.samples) # Write logz and dlogz logz = self._sampler.results.logz[-1:][0] dlogz = self._sampler.results.logzerr[-1:][0] fp.write_logevidence(logz, dlogz)
@property def model_stats(self): pass @property def logz(self): """ return bayesian evidence estimated by dynesty sampler """ return self._sampler.results.logz[-1:][0] @property def logz_err(self): """ return error in bayesian evidence estimated by dynesty sampler """ return self._sampler.results.logzerr[-1:][0]
[docs] def sample_rwalk_mod(args): """ Modified version of dynesty.sampling.sample_rwalk Adapted from version used in bilby/dynesty """ try: # dynesty <= 1.1 from dynesty.utils import unitcheck, reflect # Unzipping. (u, loglstar, axes, scale, prior_transform, loglikelihood, kwargs) = args except ImportError: # dynest >= 1.2 from dynesty.utils import unitcheck, apply_reflect as reflect (u, loglstar, axes, scale, prior_transform, loglikelihood, _, kwargs) = args rstate = numpy.random # Bounds nonbounded = kwargs.get('nonbounded', None) periodic = kwargs.get('periodic', None) reflective = kwargs.get('reflective', None) # Setup. n = len(u) walks = kwargs.get('walks', 10 * n) # minimum number of steps maxmcmc = kwargs.get('maxmcmc', 2000) # Maximum number of steps nact = kwargs.get('nact', 5) # Number of ACT old_act = kwargs.get('old_act', walks) # Initialize internal variables accept = 0 reject = 0 nfail = 0 act = numpy.inf u_list = [] v_list = [] logl_list = [] ii = 0 while ii < nact * act: ii += 1 # Propose a direction on the unit n-sphere. drhat = rstate.randn(n) drhat /= numpy.linalg.norm(drhat) # Scale based on dimensionality. dr = drhat * rstate.rand() ** (1.0 / n) # Transform to proposal distribution. du = numpy.dot(axes, dr) u_prop = u + scale * du # Wrap periodic parameters if periodic is not None: u_prop[periodic] = numpy.mod(u_prop[periodic], 1) # Reflect if reflective is not None: u_prop[reflective] = reflect(u_prop[reflective]) # Check unit cube constraints. if u.max() < 0: break if unitcheck(u_prop, nonbounded): pass else: nfail += 1 # Only start appending to the chain once a single jump is made if accept > 0: u_list.append(u_list[-1]) v_list.append(v_list[-1]) logl_list.append(logl_list[-1]) continue # Check proposed point. v_prop = prior_transform(numpy.array(u_prop)) logl_prop = loglikelihood(numpy.array(v_prop)) if logl_prop > loglstar: u = u_prop v = v_prop logl = logl_prop accept += 1 u_list.append(u) v_list.append(v) logl_list.append(logl) else: reject += 1 # Only start appending to the chain once a single jump is made if accept > 0: u_list.append(u_list[-1]) v_list.append(v_list[-1]) logl_list.append(logl_list[-1]) # If we've taken the minimum number of steps, calculate the ACT if accept + reject > walks: act = estimate_nmcmc( accept_ratio=accept / (accept + reject + nfail), old_act=old_act, maxmcmc=maxmcmc) # If we've taken too many likelihood evaluations then break if accept + reject > maxmcmc: logging.warning( "Hit maximum number of walks {} with accept={}, reject={}, " "and nfail={} try increasing maxmcmc" .format(maxmcmc, accept, reject, nfail)) break # If the act is finite, pick randomly from within the chain if numpy.isfinite(act) and int(.5 * nact * act) < len(u_list): idx = numpy.random.randint(int(.5 * nact * act), len(u_list)) u = u_list[idx] v = v_list[idx] logl = logl_list[idx] else: logging.debug("Unable to find a new point using walk: " "returning a random point") u = numpy.random.uniform(size=n) v = prior_transform(u) logl = loglikelihood(v) blob = {'accept': accept, 'reject': reject, 'fail': nfail, 'scale': scale} kwargs["old_act"] = act ncall = accept + reject return u, v, logl, ncall, blob
[docs] def estimate_nmcmc(accept_ratio, old_act, maxmcmc, safety=5, tau=None): """Estimate autocorrelation length of chain using acceptance fraction Using ACL = (2/acc) - 1 multiplied by a safety margin. Code adapated from CPNest: * https://github.com/johnveitch/cpnest/blob/master/cpnest/sampler.py * https://github.com/farr/Ensemble.jl Parameters ---------- accept_ratio: float [0, 1] Ratio of the number of accepted points to the total number of points old_act: int The ACT of the last iteration maxmcmc: int The maximum length of the MCMC chain to use safety: int A safety factor applied in the calculation tau: int (optional) The ACT, if given, otherwise estimated. """ if tau is None: tau = maxmcmc / safety if accept_ratio == 0.0: Nmcmc_exact = (1 + 1 / tau) * old_act else: Nmcmc_exact = ( (1. - 1. / tau) * old_act + (safety / tau) * (2. / accept_ratio - 1.) ) Nmcmc_exact = float(min(Nmcmc_exact, maxmcmc)) return max(safety, int(Nmcmc_exact))