Source code for pycbc.neutron_stars.pg_isso_solver

# Copyright (C) 2022 Francesco Pannarale, Andrew Williamson,
# Samuel Higginbotham
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

"""
Innermost Stable Spherical Orbit (ISSO) solver in the Perez-Giz (PG)
formalism. See `Stone, Loeb, Berger, PRD 87, 084053 (2013)`_.

.. _Stone, Loeb, Berger, PRD 87, 084053 (2013):
    http://dx.doi.org/10.1103/PhysRevD.87.084053
"""

import numpy as np
from scipy.optimize import root_scalar


[docs] def ISCO_solution(chi, incl): r"""Analytic solution of the innermost stable circular orbit (ISCO) for the Kerr metric. ..See eq. (2.21) of Bardeen, J. M., Press, W. H., Teukolsky, S. A. (1972)` https://articles.adsabs.harvard.edu/pdf/1972ApJ...178..347B Parameters ----------- chi: float the BH dimensionless spin parameter incl: float inclination angle between the BH spin and the orbital angular momentum in radians Returns ---------- float """ chi2 = chi * chi sgn = np.sign(np.cos(incl)) Z1 = 1 + np.cbrt(1 - chi2) * (np.cbrt(1 + chi) + np.cbrt(1 - chi)) Z2 = np.sqrt(3 * chi2 + Z1 * Z1) return 3 + Z2 - sgn * np.sqrt((3 - Z1) * (3 + Z1 + 2 * Z2))
[docs] def ISSO_eq_at_pole(r, chi): r"""Polynomial that enables the calculation of the Kerr polar (:math:`\iota = \pm \pi / 2`) innermost stable spherical orbit (ISSO) radius via the roots of .. math:: P(r) &= r^3 [r^2 (r - 6) + \chi^2 (3 r + 4)] \\ &\quad + \chi^4 [3 r (r - 2) + \chi^2] \, , where :math:`\chi` is the BH dimensionless spin parameter. Physical solutions are between 6 and :math:`1 + \sqrt{3} + \sqrt{3 + 2 \sqrt{3}}`. Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter Returns ------- float """ chi2 = chi * chi return ( r**3 * (r**2 * (r - 6) + chi2 * (3 * r + 4)) + chi2 * chi2 * (3 * r * (r - 2) + chi2))
[docs] def ISSO_eq_at_pole_dr(r, chi): """Partial derivative of :func:`ISSO_eq_at_pole` with respect to r. Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter Returns ------- float """ chi2 = chi * chi twlvchi2 = 12 * chi2 sxchi4 = 6 * chi2 * chi2 return ( 6 * r**5 - 30 * r**4 + twlvchi2 * r**3 + twlvchi2 * r**2 + sxchi4 * r + sxchi4)
[docs] def ISSO_eq_at_pole_dr2(r, chi): """Double partial derivative of :func:`ISSO_eq_at_pole` with respect to r. Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter Returns ------- float """ chi2 = chi * chi return ( 30 * r**4 - 120 * r**3 + 36 * chi2 * r**2 + 24 * chi2 * r + 6 * chi2 * chi2)
[docs] def PG_ISSO_eq(r, chi, incl): r"""Polynomial that enables the calculation of a generic innermost stable spherical orbit (ISSO) radius via the roots in :math:`r` of .. math:: S(r) &= r^8 Z(r) + \chi^2 (1 - \cos(\iota)^2) \\ &\quad * [\chi^2 (1 - \cos(\iota)^2) Y(r) - 2 r^4 X(r)]\,, where .. math:: X(r) &= \chi^2 (\chi^2 (3 \chi^2 + 4 r (2 r - 3)) \\ &\quad + r^2 (15 r (r - 4) + 28)) - 6 r^4 (r^2 - 4) \, , .. math:: Y(r) &= \chi^4 (\chi^4 + r^2 [7 r (3 r - 4) + 36]) \\ &\quad + 6 r (r - 2) \\ &\qquad * (\chi^6 + 2 r^3 [\chi^2 (3 r + 2) + 3 r^2 (r - 2)]) \, , and :math:`Z(r) =` :func:`ISCO_eq`. Physical solutions are between the equatorial ISSO (i.e. the ISCO) radius (:func:`ISCO_eq`) and the polar ISSO radius (:func:`ISSO_eq_at_pole`). See `Stone, Loeb, Berger, PRD 87, 084053 (2013)`_. .. _Stone, Loeb, Berger, PRD 87, 084053 (2013): http://dx.doi.org/10.1103/PhysRevD.87.084053 Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter incl: float inclination angle between the BH spin and the orbital angular momentum in radians Returns ------- float """ chi2 = chi * chi chi4 = chi2 * chi2 r2 = r * r r4 = r2 * r2 three_r = 3 * r r_minus_2 = r - 2 sin_incl2 = (np.sin(incl))**2 X = ( chi2 * ( chi2 * (3 * chi2 + 4 * r * (2 * r - 3)) + r2 * (15 * r * (r - 4) + 28)) - 6 * r4 * (r2 - 4)) Y = ( chi4 * (chi4 + r2 * (7 * r * (three_r - 4) + 36)) + 6 * r * r_minus_2 * ( chi4 * chi2 + 2 * r2 * r * ( chi2 * (three_r + 2) + 3 * r2 * r_minus_2))) Z = (r * (r - 6))**2 - chi2 * (2 * r * (3 * r + 14) - 9 * chi2) return r4 * r4 * Z + chi2 * sin_incl2 * (chi2 * sin_incl2 * Y - 2 * r4 * X)
[docs] def PG_ISSO_eq_dr(r, chi, incl): """Partial derivative of :func:`PG_ISSO_eq` with respect to r. Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter incl: float inclination angle between the BH spin and the orbital angular momentum in radians Returns ------- float """ sini = np.sin(incl) sin2i = sini * sini sin4i = sin2i * sin2i chi2 = chi * chi chi4 = chi2 * chi2 chi6 = chi4 * chi2 chi8 = chi4 * chi4 chi10 = chi6 * chi4 return ( 12 * r**11 - 132 * r**10 + r**9 * (120 * chi2 * sin2i - 60 * chi2 + 360) - r**8 * 252 * chi2 + 8 * r**7 * ( 36 * chi4 * sin4i - 30 * chi4 * sin2i + 9 * chi4 - 48 * chi2 * sin2i) + 7 * r**6 * (120 * chi4 * sin2i - 144 * chi4 * sin4i) + 6 * r**5 * ( 36 * chi6 * sin4i - 16 * chi6 * sin2i + 144 * chi4 * sin4i - 56 * chi4 * sin2i) + r**4 * (120 * chi6 * sin2i - 240 * chi6 * sin4i) + r**3 * (84 * chi8 * sin4i - 24 * chi8 * sin2i - 192 * chi6 * sin4i) - 84 * r**2 * chi8 * sin4i + r * (12 * chi10 * sin4i + 72 * chi8 * sin4i) - 12 * chi10 * sin4i)
[docs] def PG_ISSO_eq_dr2(r, chi, incl): """Second partial derivative of :func:`PG_ISSO_eq` with respect to r. Parameters ---------- r: float the radial coordinate in BH mass units chi: float the BH dimensionless spin parameter incl: float inclination angle between the BH spin and the orbital angular momentum in radians Returns ------- float """ sini = np.sin(incl) sin2i = sini * sini sin4i = sin2i * sin2i chi2 = chi * chi chi4 = chi2 * chi2 chi6 = chi4 * chi2 chi8 = chi4 * chi4 return ( 132 * r**10 - 1320 * r**9 + 90 * r**8 * (12 * chi2 * sin2i - 6 * chi2 + 36) - 2016 * chi2 * r**7 + 56 * r**6 * ( 36 * chi4 * sin4i - 30 * chi4 * sin2i + 9 * chi4 - 48 * chi2 * sin2i) + 42 * r**5 * (120 * chi4 * sin2i - 144 * chi4 * sin4i) + 30 * r**4 * ( 36 * chi6 * sin4i - 16 * chi6 * sin2i + 144 * chi4 * sin4i - 56 * chi4 * sin2i) + r**3 * (480 * chi6 * sin2i - 960 * chi6 * sin4i) + r**2 * ( 252 * chi8 * sin4i - 72 * chi8 * sin2i - 576 * chi6 * sin4i) - r * 168 * chi8 * sin4i + 12 * chi8 * chi2 * sin4i + 72 * chi8 * sin4i)
[docs] def PG_ISSO_solver(chi, incl): """Function that determines the radius of the innermost stable spherical orbit (ISSO) for a Kerr BH and a generic inclination angle between the BH spin and the orbital angular momentum. This function finds the appropriate root of :func:`PG_ISSO_eq`. Parameters ---------- chi: {float, array} the BH dimensionless spin parameter incl: {float, array} the inclination angle between the BH spin and the orbital angular momentum in radians Returns ------- solution: array the radius of the orbit in BH mass units """ # Auxiliary variables if np.isscalar(chi): chi = np.array(chi, copy=False, ndmin=1) incl = np.array(incl, copy=False, ndmin=1) chi = np.abs(chi) # ISCO radius for the given spin magnitude rISCO_limit = ISCO_solution(chi, incl) # If the inclination is 0 or pi, just output the ISCO radius equatorial = np.isclose(incl, 0) | np.isclose(incl, np.pi) if all(equatorial): return rISCO_limit # ISSO radius for an inclination of pi/2 # Initial guess is based on the extrema of the polar ISSO radius equation, # that are: r=6 (chi=1) and r=1+sqrt(3)+sqrt(3+sqrt(12))=5.274... (chi=0) initial_guess = [5.27451056440629 if c > 0.5 else 6 for c in chi] rISSO_at_pole_limit = np.array([ root_scalar( ISSO_eq_at_pole, x0=g0, fprime=ISSO_eq_at_pole_dr, fprime2=ISSO_eq_at_pole_dr2, args=(c)).root for g0, c in zip(initial_guess, chi)]) # If the inclination is pi/2, just output the ISSO radius at the pole(s) polar = np.isclose(incl, 0.5*np.pi) if all(polar): return rISSO_at_pole_limit # Otherwise, find the ISSO radius for a generic inclination initial_hi = np.maximum(rISCO_limit, rISSO_at_pole_limit) initial_lo = np.minimum(rISCO_limit, rISSO_at_pole_limit) brackets = [ (bl, bh) if (c != 1 and PG_ISSO_eq(bl, c, inc) * PG_ISSO_eq(bh, c, inc) < 0) else None for bl, bh, c, inc in zip(initial_lo, initial_hi, chi, incl)] solution = np.array([ root_scalar( PG_ISSO_eq, x0=g0, fprime=PG_ISSO_eq_dr, bracket=bracket, fprime2=PG_ISSO_eq_dr2, args=(c, inc), xtol=1e-12).root for g0, bracket, c, inc in zip(initial_hi, brackets, chi, incl)]) oob = (solution < 1) | (solution > 9) if any(oob): solution = np.array([ root_scalar( PG_ISSO_eq, x0=g0, fprime=PG_ISSO_eq_dr, bracket=bracket, fprime2=PG_ISSO_eq_dr2, args=(c, inc)).root if ob else sol for g0, bracket, c, inc, ob, sol in zip(initial_lo, brackets, chi, incl, oob, solution) ]) oob = (solution < 1) | (solution > 9) if any(oob): raise RuntimeError('Unable to obtain some solutions!') return solution