Source code for pycbc.population.scale_injections

import numpy as np
from numpy import log
import copy
from scipy.interpolate import interp1d
from scipy.integrate import quad
from astropy.cosmology import WMAP9 as cosmo

from pycbc.conversions import mchirp_from_mass1_mass2 as m1m2tomch
from pycbc.io.hdf import HFile

_mch_BNS = 1.4/2**.2
_redshifts, _d_lum, _I = np.arange(0., 5., 0.01), [], []
_save_params = ['mass1', 'mass2', 'spin1z', 'spin2z', 'spin1y', 'spin2y',
                                'spin1x', 'spin2x', 'distance', 'end_time']

for zz in _redshifts:
    _d_lum.append(cosmo.luminosity_distance(zz).value)
_dlum_interp = interp1d(_d_lum, _redshifts)

[docs] def read_injections(sim_files, m_dist, s_dist, d_dist): ''' Read all the injections from the files in the provided folder. The files must belong to individual set i.e. no files that combine all the injections in a run. Identify injection strategies and finds parameter boundaries. Collect injection according to GPS. Parameters ---------- sim_files: list List containign names of the simulation files m_dist: list The mass distribution used in the simulation runs s_dist: list The spin distribution used in the simulation runs d_dist: list The distance distribution used in the simulation runs Returns ------- injections: dictionary Contains the organized information about the injections ''' injections = {} min_d, max_d = 1e12, 0 nf = len(sim_files) for i in range(nf): key = str(i) injections[key] = process_injections(sim_files[i]) injections[key]['file_name'] = sim_files[i] injections[key]['m_dist'] = m_dist[i] injections[key]['s_dist'] = s_dist[i] injections[key]['d_dist'] = d_dist[i] mass1, mass2 = injections[key]['mass1'], injections[key]['mass2'] distance = injections[key]['distance'] mchirp = m1m2tomch(mass1, mass2) injections[key]['chirp_mass'] = mchirp injections[key]['total_mass'] = mass1 + mass2 injections[key]['mtot_range'] = [min(mass1 + mass2), max(mass1 + mass2)] injections[key]['m1_range'] = [min(mass1), max(mass1)] injections[key]['m2_range'] = [min(mass2), max(mass2)] injections[key]['d_range'] = [min(distance), max(distance)] min_d, max_d = min(min_d, min(distance)), max(max_d, max(distance)) injections['z_range'] = [dlum_to_z(min_d), dlum_to_z(max_d)] return injections
[docs] def estimate_vt(injections, mchirp_sampler, model_pdf, **kwargs): #Try including ifar threshold '''Based on injection strategy and the desired astro model estimate the injected volume. Scale injections and estimate sensitive volume. Parameters ---------- injections: dictionary Dictionary obtained after reading injections from read_injections mchirp_sampler: function Sampler for producing chirp mass samples for the astro model. model_pdf: function The PDF for astro model in mass1-mass2-spin1z-spin2z space. This is easily extendible to include precession kwargs: key words Inputs for thresholds and astrophysical models Returns ------- injection_chunks: dictionary The input dictionary with VT and VT error included with the injections ''' thr_var = kwargs.get('thr_var') thr_val = kwargs.get('thr_val') nsamples = 1000000 #Used to calculate injected astro volume injections = copy.deepcopy(injections) min_z, max_z = injections['z_range'] V = quad(contracted_dVdc, 0., max_z)[0] z_astro = astro_redshifts(min_z, max_z, nsamples) astro_lum_dist = cosmo.luminosity_distance(z_astro).value mch_astro = np.array(mchirp_sampler(nsamples = nsamples, **kwargs)) mch_astro_det = mch_astro * (1. + z_astro) idx_within = np.zeros(nsamples) for key in injections.keys(): if key == 'z_range': # This is repeated down again and is so continue mchirp = injections[key]['chirp_mass'] min_mchirp, max_mchirp = min(mchirp), max(mchirp) distance = injections[key]['distance'] if injections[key]['d_dist'] == 'uniform': d_min, d_max = min(distance), max(distance) elif injections[key]['d_dist'] == 'dchirp': d_fid_min = min(distance / (mchirp/_mch_BNS)**(5/6.)) d_fid_max = max(distance / (mchirp/_mch_BNS)**(5/6.)) d_min = d_fid_min * (mch_astro_det/_mch_BNS)**(5/6.) d_max = d_fid_max * (mch_astro_det/_mch_BNS)**(5/6.) bound = np.sign((max_mchirp-mch_astro_det)*(mch_astro_det-min_mchirp)) bound += np.sign((d_max - astro_lum_dist)*(astro_lum_dist - d_min)) idx = np.where(bound == 2) idx_within[idx] = 1 inj_V0 = 4*np.pi*V*len(idx_within[idx_within == 1])/float(nsamples) injections['inj_astro_vol'] = inj_V0 # Estimate the sensitive volume z_range = injections['z_range'] V_min = quad(contracted_dVdc, 0., z_range[0])[0] V_max = quad(contracted_dVdc, 0., z_range[1])[0] thr_falloff, i_inj, i_det, i_det_sq = [], 0, 0, 0 gps_min, gps_max = 1e15, 0 keys = injections.keys() for key in keys: if key == 'z_range' or key == 'inj_astro_vol': continue data = injections[key] distance = data['distance'] mass1, mass2 = data['mass1'], data['mass2'] spin1z, spin2z = data['spin1z'], data['spin2z'] mchirp = data['chirp_mass'] gps_min = min(gps_min, min(data['end_time'])) gps_max = max(gps_max, max(data['end_time'])) z_inj = dlum_to_z(distance) m1_sc, m2_sc = mass1/(1 + z_inj), mass2/(1 + z_inj) p_out = model_pdf(m1_sc, m2_sc, spin1z, spin2z) p_out *= pdf_z_astro(z_inj, V_min, V_max) p_in = 0 J = cosmo.luminosity_distance(z_inj + 0.0005).value J -= cosmo.luminosity_distance(z_inj - 0.0005).value J = abs(J)/0.001 # A quick way to get dD_l/dz # Sum probability of injections from j-th set for all the strategies for key2 in keys: if key2 == 'z_range' or key2 == 'inj_astro_vol': continue dt_j = injections[key2] dist_j = dt_j['distance'] m1_j, m2_j = dt_j['mass1'], dt_j['mass2'] s1x_2, s2x_2 = dt_j['spin1x'], dt_j['spin2x'] s1y_2, s2y_2 = dt_j['spin1y'], dt_j['spin2y'] s1z_2, s2z_2 = dt_j['spin1z'], dt_j['spin2z'] s1 = np.sqrt(s1x_2**2 + s1y_2**2 + s1z_2**2) s2 = np.sqrt(s2x_2**2 + s2y_2**2 + s2z_2**2) mch_j = dt_j['chirp_mass'] #Get probability density for injections in mass-distance space if dt_j['m_dist'] == 'totalMass': lomass, himass = min(min(m1_j), min(m2_j), max(max(m1_j), max(m2_j))) lomass_2, himass_2 = lomass, himass elif dt_j['m_dist'] == 'componentMass' or dt_j['m_dist'] == 'log': lomass, himass = min(m1_j), max(m1_j) lomass_2, himass_2 = min(m2_j), max(m2_j) if dt_j['d_dist'] == 'dchirp': l_dist = min(dist_j / (mch_j/_mch_BNS)**(5/6.)) h_dist = max(dist_j / (mch_j/_mch_BNS)**(5/6.)) elif dt_j['d_dist'] == 'uniform': l_dist, h_dist = min(dist_j), max(dist_j) mdist = dt_j['m_dist'] prob_mass = inj_mass_pdf(mdist, mass1, mass2, lomass, himass, lomass_2, himass_2) ddist = dt_j['d_dist'] prob_dist = inj_distance_pdf(ddist, distance, l_dist, h_dist, mchirp) hspin1, hspin2 = max(s1), max(s2) prob_spin = inj_spin_pdf(dt_j['s_dist'], hspin1, spin1z) prob_spin *= inj_spin_pdf(dt_j['s_dist'], hspin2, spin2z) p_in += prob_mass * prob_dist * prob_spin * J * (1 + z_inj)**2 p_in[p_in == 0] = 1e12 p_out_in = p_out/p_in i_inj += np.sum(p_out_in) i_det += np.sum((p_out_in)[data[thr_var] > thr_val]) i_det_sq += np.sum((p_out_in)[data[thr_var] > thr_val]**2) idx_thr = np.where(data[thr_var] > thr_val) thrs = data[thr_var][idx_thr] ratios = p_out_in[idx_thr]/max(p_out_in[idx_thr]) rndn = np.random.uniform(0, 1, len(ratios)) idx_ratio = np.where(ratios > rndn) thr_falloff.append(thrs[idx_ratio]) inj_V0 = injections['inj_astro_vol'] injections['ninj'] = i_inj injections['ndet'] = i_det injections['ndetsq'] = i_det_sq injections['VT'] = ((inj_V0*i_det/i_inj) * (gps_max - gps_min)/31557600) injections['VT_err'] = injections['VT'] * np.sqrt(i_det_sq)/i_det injections['thr_falloff'] = np.hstack(np.array(thr_falloff).flat) return injections
[docs] def process_injections(hdffile): """Function to read in the injection file and extract the found injections and all injections Parameters ---------- hdffile: hdf file File for which injections are to be processed Returns ------- data: dictionary Dictionary containing injection read from the input file """ data = {} with HFile(hdffile, 'r') as inp: found_index = inp['found_after_vetoes/injection_index'][:] for param in _save_params: data[param] = inp['injections/'+param][:] ifar = np.zeros_like(data[_save_params[0]]) ifar[found_index] = inp['found_after_vetoes/ifar'][:] data['ifar'] = ifar stat = np.zeros_like(data[_save_params[0]]) stat[found_index] = inp['found_after_vetoes/stat'][:] data['stat'] = stat return data
[docs] def dlum_to_z(dl): ''' Get the redshift for a luminosity distance Parameters ---------- dl: array The array of luminosity distances Returns ------- array The redshift values corresponding to the luminosity distances ''' return _dlum_interp(dl)
[docs] def astro_redshifts(min_z, max_z, nsamples): '''Sample the redshifts for sources, with redshift independent rate, using standard cosmology Parameters ---------- min_z: float Minimum redshift max_z: float Maximum redshift nsamples: int Number of samples Returns ------- z_astro: array nsamples of redshift, between min_z, max_z, by standard cosmology ''' dz, fac = 0.001, 3.0 # use interpolation instead of directly estimating all the pdfz for rndz V = quad(contracted_dVdc, 0., max_z)[0] zbins = np.arange(min_z, max_z + dz/2., dz) zcenter = (zbins[:-1] + zbins[1:]) / 2 pdfz = cosmo.differential_comoving_volume(zcenter).value/(1+zcenter)/V int_pdf = interp1d(zcenter, pdfz, bounds_error=False, fill_value=0) rndz = np.random.uniform(min_z, max_z, int(fac*nsamples)) pdf_zs = int_pdf(rndz) maxpdf = max(pdf_zs) rndn = np.random.uniform(0, 1, int(fac*nsamples)) * maxpdf diff = pdf_zs - rndn idx = np.where(diff > 0) z_astro = rndz[idx] np.random.shuffle(z_astro) z_astro.resize(nsamples) return z_astro
[docs] def pdf_z_astro(z, V_min, V_max): ''' Get the probability density for the rate of events at a redshift assuming standard cosmology ''' return contracted_dVdc(z)/(V_max - V_min)
[docs] def contracted_dVdc(z): #Return the time-dilated differential comoving volume return cosmo.differential_comoving_volume(z).value/(1+z)
##### Defining current standard strategies used for making injections #####
[docs] def inj_mass_pdf(key, mass1, mass2, lomass, himass, lomass_2 = 0, himass_2 = 0): '''Estimate the probability density based on the injection strategy Parameters ---------- key: string Injection strategy mass1: array First mass of the injections mass2: array Second mass of the injections lomass: float Lower value of the mass distributions himass: float higher value of the mass distribution Returns ------- pdf: array Probability density of the injections ''' mass1, mass2 = np.array(mass1), np.array(mass2) if key == 'totalMass': # Returns the PDF of mass when total mass is uniformly distributed. # Both the component masses have the same distribution for this case. # Parameters # ---------- # lomass: lower component mass # himass: higher component mass bound = np.sign((lomass + himass) - (mass1 + mass2)) bound += np.sign((himass - mass1)*(mass1 - lomass)) bound += np.sign((himass - mass2)*(mass2 - lomass)) idx = np.where(bound != 3) pdf = 1./(himass - lomass)/(mass1 + mass2 - 2 * lomass) pdf[idx] = 0 return pdf if key == 'componentMass': # Returns the PDF of mass when component mass is uniformly # distributed. Component masses are independent for this case. # Parameters # ---------- # lomass: lower component mass # himass: higher component mass bound = np.sign((himass - mass1)*(mass1 - lomass)) bound += np.sign((himass_2 - mass2)*(mass2 - lomass_2)) idx = np.where(bound != 2) pdf = np.ones_like(mass1) / (himass - lomass) / (himass_2 - lomass_2) pdf[idx] = 0 return pdf if key == 'log': # Returns the PDF of mass when component mass is uniform in log. # Component masses are independent for this case. # Parameters # ---------- # lomass: lower component mass # himass: higher component mass bound = np.sign((himass - mass1)*(mass1 - lomass)) bound += np.sign((himass_2 - mass2)*(mass2 - lomass_2)) idx = np.where(bound != 2) pdf = 1 / (log(himass) - log(lomass)) / (log(himass_2) - log(lomass_2)) pdf /= (mass1 * mass2) pdf[idx] = 0 return pdf
[docs] def inj_spin_pdf(key, high_spin, spinz): ''' Estimate the probability density of the injections for the spin distribution. Parameters ---------- key: string Injections strategy high_spin: float Maximum spin used in the strategy spinz: array Spin of the injections (for one component) ''' # If the data comes from disable_spin simulation if spinz[0] == 0: return np.ones_like(spinz) spinz = np.array(spinz) bound = np.sign(np.absolute(high_spin) - np.absolute(spinz)) bound += np.sign(1 - np.absolute(spinz)) if key == 'precessing': # Returns the PDF of spins when total spin is # isotropically distributed. Both the component # masses have the same distribution for this case. pdf = (np.log(high_spin - np.log(abs(spinz)))/high_spin/2) idx = np.where(bound != 2) pdf[idx] = 0 return pdf if key == 'aligned': # Returns the PDF of mass when spins are aligned and uniformly # distributed. Component spins are independent for this case. pdf = (np.ones_like(spinz) / 2 / high_spin) idx = np.where(bound != 2) pdf[idx] = 0 return pdf if key == 'disable_spin': # Returns unit array pdf = np.ones_like(spinz) return pdf
[docs] def inj_distance_pdf(key, distance, low_dist, high_dist, mchirp = 1): ''' Estimate the probability density of the injections for the distance distribution. Parameters ---------- key: string Injections strategy distance: array Array of distances low_dist: float Lower value of distance used in the injection strategy high_dist: float Higher value of distance used in the injection strategy ''' distance = np.array(distance) if key == 'uniform': # Returns the PDF at a distance when # distance is uniformly distributed. pdf = np.ones_like(distance)/(high_dist - low_dist) bound = np.sign((high_dist - distance)*(distance - low_dist)) idx = np.where(bound != 1) pdf[idx] = 0 return pdf if key == 'dchirp': # Returns the PDF at a distance when distance is uniformly # distributed but scaled by the chirp mass weight = (mchirp/_mch_BNS)**(5./6) pdf = np.ones_like(distance) / weight / (high_dist - low_dist) bound = np.sign((weight*high_dist - distance)*(distance - weight*low_dist)) idx = np.where(bound != 1) pdf[idx] = 0 return pdf