# Source code for pycbc.types.frequencyseries

```
# Copyright (C) 2012 Tito Dal Canton, Josh Willis
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Provides a class representing a frequency series.
"""
from __future__ import division
import os as _os, h5py
from pycbc.types.array import Array, _convert, zeros, _noreal
import lal as _lal
import numpy as _numpy
[docs]class FrequencySeries(Array):
"""Models a frequency series consisting of uniformly sampled scalar values.
Parameters
----------
initial_array : array-like
Array containing sampled data.
delta_f : float
Frequency between consecutive samples in Hertz.
epoch : {None, lal.LIGOTimeGPS}, optional
Start time of the associated time domain data in seconds.
dtype : {None, data-type}, optional
Sample data type.
copy : boolean, optional
If True, samples are copied to a new array.
Attributes
----------
delta_f : float
Frequency spacing
epoch : lal.LIGOTimeGPS
Time at 0 index.
sample_frequencies : Array
Frequencies that each index corresponds to.
"""
def __init__(self, initial_array, delta_f=None, epoch="", dtype=None, copy=True):
if len(initial_array) < 1:
raise ValueError('initial_array must contain at least one sample.')
if delta_f is None:
try:
delta_f = initial_array.delta_f
except AttributeError:
raise TypeError('must provide either an initial_array with a delta_f attribute, or a value for delta_f')
if not delta_f > 0:
raise ValueError('delta_f must be a positive number')
# We gave a nonsensical default value to epoch so we can test if it's been set.
# If the user passes in an initial_array that has an 'epoch' attribute and doesn't
# pass in a value of epoch, then our new object's epoch comes from initial_array.
# But if the user passed in a value---even 'None'---that will take precedence over
# anything set in initial_array. Finally, if the user passes in something without
# an epoch attribute *and* doesn't pass in a value of epoch, it becomes 'None'
if not isinstance(epoch,_lal.LIGOTimeGPS):
if epoch == "":
if isinstance(initial_array,FrequencySeries):
epoch = initial_array._epoch
else:
epoch = _lal.LIGOTimeGPS(0)
elif epoch is not None:
try:
if isinstance(epoch, _numpy.generic):
# In python3 lal LIGOTimeGPS will not work on numpy
# types as input. A quick google on how to generically
# convert numpy floats/ints to the python equivalent
# https://stackoverflow.com/questions/9452775/
epoch = _lal.LIGOTimeGPS(epoch.item())
else:
epoch = _lal.LIGOTimeGPS(epoch)
except:
raise TypeError('epoch must be either None or a lal.LIGOTimeGPS')
Array.__init__(self, initial_array, dtype=dtype, copy=copy)
self._delta_f = delta_f
self._epoch = epoch
def _return(self, ary):
return FrequencySeries(ary, self._delta_f, epoch=self._epoch, copy=False)
def _typecheck(self, other):
if isinstance(other, FrequencySeries):
try:
_numpy.testing.assert_almost_equal(other._delta_f,
self._delta_f)
except:
raise ValueError('different delta_f')
# consistency of _epoch is not required because we may want
# to combine frequency series estimated at different times
# (e.g. PSD estimation)
[docs] def get_delta_f(self):
"""Return frequency between consecutive samples in Hertz.
"""
return self._delta_f
delta_f = property(get_delta_f,
doc="Frequency between consecutive samples in Hertz.")
[docs] def get_epoch(self):
"""Return frequency series epoch as a LIGOTimeGPS.
"""
return self._epoch
epoch = property(get_epoch,
doc="Frequency series epoch as a LIGOTimeGPS.")
[docs] def get_sample_frequencies(self):
"""Return an Array containing the sample frequencies.
"""
return Array(range(len(self))) * self._delta_f
sample_frequencies = property(get_sample_frequencies,
doc="Array of the sample frequencies.")
def _getslice(self, index):
if index.step is not None:
new_delta_f = self._delta_f * index.step
else:
new_delta_f = self._delta_f
return FrequencySeries(Array._getslice(self, index),
delta_f=new_delta_f,
epoch=self._epoch,
copy=False)
[docs] def at_frequency(self, freq):
""" Return the value at the specified frequency
"""
return self[int(freq / self.delta_f)]
@property
def start_time(self):
"""Return the start time of this vector
"""
return self.epoch
@start_time.setter
def start_time(self, time):
""" Set the start time
"""
self._epoch = _lal.LIGOTimeGPS(time)
@property
def end_time(self):
"""Return the end time of this vector
"""
return self.start_time + self.duration
@property
def duration(self):
"""Return the time duration of this vector
"""
return 1.0 / self.delta_f
@property
def delta_t(self):
"""Return the time between samples if this were a time series.
This assume the time series is even in length!
"""
return 1.0 / self.sample_rate
@property
def sample_rate(self):
"""Return the sample rate this would have in the time domain. This
assumes even length time series!
"""
return (len(self) - 1) * self.delta_f * 2.0
def __eq__(self,other):
"""
This is the Python special method invoked whenever the '=='
comparison is used. It will return true if the data of two
frequency series are identical, and all of the numeric meta-data
are identical, irrespective of whether or not the two
instances live in the same memory (for that comparison, the
Python statement 'a is b' should be used instead).
Thus, this method returns 'True' if the types of both 'self'
and 'other' are identical, as well as their lengths, dtypes,
epochs, delta_fs and the data in the arrays, element by element.
It will always do the comparison on the CPU, but will *not* move
either object to the CPU if it is not already there, nor change
the scheme of either object. It is possible to compare a CPU
object to a GPU object, and the comparison should be true if the
data and meta-data of the two objects are the same.
Note in particular that this function returns a single boolean,
and not an array of booleans as Numpy does. If the numpy
behavior is instead desired it can be obtained using the numpy()
method of the PyCBC type to get a numpy instance from each
object, and invoking '==' on those two instances.
Parameters
----------
other: another Python object, that should be tested for equality
with 'self'.
Returns
-------
boolean: 'True' if the types, dtypes, lengths, epochs, delta_fs
and data of the two objects are each identical.
"""
if super(FrequencySeries,self).__eq__(other):
return (self._epoch == other._epoch and self._delta_f == other._delta_f)
else:
return False
[docs] def almost_equal_elem(self,other,tol,relative=True,dtol=0.0):
"""
Compare whether two frequency series are almost equal, element
by element.
If the 'relative' parameter is 'True' (the default) then the
'tol' parameter (which must be positive) is interpreted as a
relative tolerance, and the comparison returns 'True' only if
abs(self[i]-other[i]) <= tol*abs(self[i])
for all elements of the series.
If 'relative' is 'False', then 'tol' is an absolute tolerance,
and the comparison is true only if
abs(self[i]-other[i]) <= tol
for all elements of the series.
The method also checks that self.delta_f is within 'dtol' of
other.delta_f; if 'dtol' has its default value of 0 then exact
equality between the two is required.
Other meta-data (type, dtype, length, and epoch) must be exactly
equal. If either object's memory lives on the GPU it will be
copied to the CPU for the comparison, which may be slow. But the
original object itself will not have its memory relocated nor
scheme changed.
Parameters
----------
other: another Python object, that should be tested for
almost-equality with 'self', element-by-element.
tol: a non-negative number, the tolerance, which is interpreted
as either a relative tolerance (the default) or an absolute
tolerance.
relative: A boolean, indicating whether 'tol' should be interpreted
as a relative tolerance (if True, the default if this argument
is omitted) or as an absolute tolerance (if tol is False).
dtol: a non-negative number, the tolerance for delta_f. Like 'tol',
it is interpreted as relative or absolute based on the value of
'relative'. This parameter defaults to zero, enforcing exact
equality between the delta_f values of the two FrequencySeries.
Returns
-------
boolean: 'True' if the data and delta_fs agree within the tolerance,
as interpreted by the 'relative' keyword, and if the types,
lengths, dtypes, and epochs are exactly the same.
"""
# Check that the delta_f tolerance is non-negative; raise an exception
# if needed.
if (dtol < 0.0):
raise ValueError("Tolerance in delta_f cannot be negative")
if super(FrequencySeries,self).almost_equal_elem(other,tol=tol,relative=relative):
if relative:
return (self._epoch == other._epoch and
abs(self._delta_f-other._delta_f) <= dtol*self._delta_f)
else:
return (self._epoch == other._epoch and
abs(self._delta_f-other._delta_f) <= dtol)
else:
return False
[docs] def almost_equal_norm(self,other,tol,relative=True,dtol=0.0):
"""
Compare whether two frequency series are almost equal, normwise.
If the 'relative' parameter is 'True' (the default) then the
'tol' parameter (which must be positive) is interpreted as a
relative tolerance, and the comparison returns 'True' only if
abs(norm(self-other)) <= tol*abs(norm(self)).
If 'relative' is 'False', then 'tol' is an absolute tolerance,
and the comparison is true only if
abs(norm(self-other)) <= tol
The method also checks that self.delta_f is within 'dtol' of
other.delta_f; if 'dtol' has its default value of 0 then exact
equality between the two is required.
Other meta-data (type, dtype, length, and epoch) must be exactly
equal. If either object's memory lives on the GPU it will be
copied to the CPU for the comparison, which may be slow. But the
original object itself will not have its memory relocated nor
scheme changed.
Parameters
----------
other: another Python object, that should be tested for
almost-equality with 'self', based on their norms.
tol: a non-negative number, the tolerance, which is interpreted
as either a relative tolerance (the default) or an absolute
tolerance.
relative: A boolean, indicating whether 'tol' should be interpreted
as a relative tolerance (if True, the default if this argument
is omitted) or as an absolute tolerance (if tol is False).
dtol: a non-negative number, the tolerance for delta_f. Like 'tol',
it is interpreted as relative or absolute based on the value of
'relative'. This parameter defaults to zero, enforcing exact
equality between the delta_f values of the two FrequencySeries.
Returns
-------
boolean: 'True' if the data and delta_fs agree within the tolerance,
as interpreted by the 'relative' keyword, and if the types,
lengths, dtypes, and epochs are exactly the same.
"""
# Check that the delta_f tolerance is non-negative; raise an exception
# if needed.
if (dtol < 0.0):
raise ValueError("Tolerance in delta_f cannot be negative")
if super(FrequencySeries,self).almost_equal_norm(other,tol=tol,relative=relative):
if relative:
return (self._epoch == other._epoch and
abs(self._delta_f-other._delta_f) <= dtol*self._delta_f)
else:
return (self._epoch == other._epoch and
abs(self._delta_f-other._delta_f) <= dtol)
else:
return False
[docs] @_convert
def lal(self):
"""Produces a LAL frequency series object equivalent to self.
Returns
-------
lal_data : {lal.*FrequencySeries}
LAL frequency series object containing the same data as self.
The actual type depends on the sample's dtype. If the epoch of
self was 'None', the epoch of the returned LAL object will be
LIGOTimeGPS(0,0); otherwise, the same as that of self.
Raises
------
TypeError
If frequency series is stored in GPU memory.
"""
lal_data = None
if self._epoch is None:
ep = _lal.LIGOTimeGPS(0,0)
else:
ep = self._epoch
if self._data.dtype == _numpy.float32:
lal_data = _lal.CreateREAL4FrequencySeries("",ep,0,self.delta_f,_lal.SecondUnit,len(self))
elif self._data.dtype == _numpy.float64:
lal_data = _lal.CreateREAL8FrequencySeries("",ep,0,self.delta_f,_lal.SecondUnit,len(self))
elif self._data.dtype == _numpy.complex64:
lal_data = _lal.CreateCOMPLEX8FrequencySeries("",ep,0,self.delta_f,_lal.SecondUnit,len(self))
elif self._data.dtype == _numpy.complex128:
lal_data = _lal.CreateCOMPLEX16FrequencySeries("",ep,0,self.delta_f,_lal.SecondUnit,len(self))
lal_data.data.data[:] = self.numpy()
return lal_data
[docs] def save(self, path, group=None, ifo='P1'):
"""
Save frequency series to a Numpy .npy, hdf, or text file. The first column
contains the sample frequencies, the second contains the values.
In the case of a complex frequency series saved as text, the imaginary
part is written as a third column. When using hdf format, the data is stored
as a single vector, along with relevant attributes.
Parameters
----------
path: string
Destination file path. Must end with either .hdf, .npy or .txt.
group: string
Additional name for internal storage use. Ex. hdf storage uses
this as the key value.
Raises
------
ValueError
If path does not end in .npy or .txt.
"""
ext = _os.path.splitext(path)[1]
if ext == '.npy':
output = _numpy.vstack((self.sample_frequencies.numpy(),
self.numpy())).T
_numpy.save(path, output)
elif ext == '.txt':
if self.kind == 'real':
output = _numpy.vstack((self.sample_frequencies.numpy(),
self.numpy())).T
elif self.kind == 'complex':
output = _numpy.vstack((self.sample_frequencies.numpy(),
self.numpy().real,
self.numpy().imag)).T
_numpy.savetxt(path, output)
elif ext == '.xml' or path.endswith('.xml.gz'):
from pycbc.io.live import make_psd_xmldoc
from glue.ligolw import utils
if self.kind != 'real':
raise ValueError('XML only supports real frequency series')
output = self.lal()
# When writing in this format we must *not* have the 0 values at
# frequencies less than flow. To resolve this we set the first
# non-zero value < flow.
data_lal = output.data.data
first_idx = _numpy.argmax(data_lal>0)
if not first_idx == 0:
data_lal[:first_idx] = data_lal[first_idx]
psddict = {ifo: output}
utils.write_filename(make_psd_xmldoc(psddict), path,
gz=path.endswith(".gz"))
elif ext == '.hdf':
key = 'data' if group is None else group
with h5py.File(path, 'a') as f:
ds = f.create_dataset(key, data=self.numpy(),
compression='gzip',
compression_opts=9, shuffle=True)
ds.attrs['epoch'] = float(self.epoch)
ds.attrs['delta_f'] = float(self.delta_f)
else:
raise ValueError('Path must end with .npy, .txt, .xml, .xml.gz '
'or .hdf')
[docs] @_noreal
def to_timeseries(self, delta_t=None):
""" Return the Fourier transform of this time series.
Note that this assumes even length time series!
Parameters
----------
delta_t : {None, float}, optional
The time resolution of the returned series. By default the
resolution is determined by length and delta_f of this frequency
series.
Returns
-------
TimeSeries:
The inverse fourier transform of this frequency series.
"""
from pycbc.fft import ifft
from pycbc.types import TimeSeries, real_same_precision_as
nat_delta_t = 1.0 / ((len(self)-1)*2) / self.delta_f
if not delta_t:
delta_t = nat_delta_t
# add 0.5 to round integer
tlen = int(1.0 / self.delta_f / delta_t + 0.5)
flen = int(tlen / 2 + 1)
if flen < len(self):
raise ValueError("The value of delta_t (%s) would be "
"undersampled. Maximum delta_t "
"is %s." % (delta_t, nat_delta_t))
if not delta_t:
tmp = self
else:
tmp = FrequencySeries(zeros(flen, dtype=self.dtype),
delta_f=self.delta_f, epoch=self.epoch)
tmp[:len(self)] = self[:]
f = TimeSeries(zeros(tlen,
dtype=real_same_precision_as(self)),
delta_t=delta_t)
ifft(tmp, f)
return f
[docs] @_noreal
def cyclic_time_shift(self, dt):
"""Shift the data and timestamps by a given number of seconds
Shift the data and timestamps in the time domain a given number of
seconds. To just change the time stamps, do ts.start_time += dt.
The time shift may be smaller than the intrinsic sample rate of the data.
Note that data will be cycliclly rotated, so if you shift by 2
seconds, the final 2 seconds of your data will now be at the
beginning of the data set.
Parameters
----------
dt : float
Amount of time to shift the vector.
Returns
-------
data : pycbc.types.FrequencySeries
The time shifted frequency series.
"""
from pycbc.waveform import apply_fseries_time_shift
data = apply_fseries_time_shift(self, dt)
data.start_time = self.start_time - dt
return data
[docs] def match(self, other, psd=None,
low_frequency_cutoff=None, high_frequency_cutoff=None):
""" Return the match between the two TimeSeries or FrequencySeries.
Return the match between two waveforms. This is equivalent to the overlap
maximized over time and phase. By default, the other vector will be
resized to match self. Beware, this may remove high frequency content or the
end of the vector.
Parameters
----------
other : TimeSeries or FrequencySeries
The input vector containing a waveform.
psd : Frequency Series
A power spectral density to weight the overlap.
low_frequency_cutoff : {None, float}, optional
The frequency to begin the match.
high_frequency_cutoff : {None, float}, optional
The frequency to stop the match.
index: int
The number of samples to shift to get the match.
Returns
-------
match: float
index: int
The number of samples to shift to get the match.
"""
from pycbc.types import TimeSeries
from pycbc.filter import match
if isinstance(other, TimeSeries):
if other.duration != self.duration:
other = other.copy()
other.resize(int(other.sample_rate * self.duration))
other = other.to_frequencyseries()
if len(other) != len(self):
other = other.copy()
other.resize(len(self))
if psd is not None and len(psd) > len(self):
psd = psd.copy()
psd.resize(len(self))
return match(self, other, psd=psd,
low_frequency_cutoff=low_frequency_cutoff,
high_frequency_cutoff=high_frequency_cutoff)
[docs]def load_frequencyseries(path, group=None):
"""
Load a FrequencySeries from a .hdf, .txt or .npy file. The
default data types will be double precision floating point.
Parameters
----------
path: string
source file path. Must end with either .npy or .txt.
group: string
Additional name for internal storage use. Ex. hdf storage uses
this as the key value.
Raises
------
ValueError
If path does not end in .npy or .txt.
"""
ext = _os.path.splitext(path)[1]
if ext == '.npy':
data = _numpy.load(path)
elif ext == '.txt':
data = _numpy.loadtxt(path)
elif ext == '.hdf':
key = 'data' if group is None else group
f = h5py.File(path, 'r')
data = f[key][:]
series = FrequencySeries(data, delta_f=f[key].attrs['delta_f'],
epoch=f[key].attrs['epoch'])
f.close()
return series
else:
raise ValueError('Path must end with .npy, .hdf, or .txt')
if data.ndim == 2:
delta_f = (data[-1][0] - data[0][0]) / (len(data)-1)
epoch = _lal.LIGOTimeGPS(data[0][0])
return FrequencySeries(data[:,1], delta_f=delta_f, epoch=epoch)
elif data.ndim == 3:
delta_f = (data[-1][0] - data[0][0]) / (len(data)-1)
epoch = _lal.LIGOTimeGPS(data[0][0])
return FrequencySeries(data[:,1] + 1j*data[:,2], delta_f=delta_f,
epoch=epoch)
else:
raise ValueError('File has %s dimensions, cannot convert to Array, \
must be 2 (real) or 3 (complex)' % data.ndim)
```