Source code for pycbc.vetoes.autochisq

# Copyright (C) 2013  Stas Babak
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

from pycbc.filter import make_frequency_series
from pycbc.filter import  matched_filter_core
from pycbc.types import Array
import numpy as np
import logging

BACKEND_PREFIX="pycbc.vetoes.autochisq_"


[docs] def autochisq_from_precomputed(sn, corr_sn, hautocorr, indices, stride=1, num_points=None, oneside=None, twophase=True, maxvalued=False): """ Compute correlation (two sided) between template and data and compares with autocorrelation of the template: C(t) = IFFT(A*A/S(f)) Parameters ---------- sn: Array[complex] normalized (!) array of complex snr for the template that produced the trigger(s) being tested corr_sn : Array[complex] normalized (!) array of complex snr for the template that you want to produce a correlation chisq test for. In the [common] case that sn and corr_sn are the same, you are computing auto-correlation chisq. hautocorr: Array[complex] time domain autocorrelation for the template indices: Array[int] compute correlation chisquare at the points specified in this array, num_points: [int, optional; default=None] Number of points used for autochisq on each side, if None all points are used. stride: [int, optional; default = 1] stride for points selection for autochisq total length <= 2*num_points*stride oneside: [str, optional; default=None] whether to use one or two sided autochisquare. If None (or not provided) twosided chi-squared will be used. If given, options are 'left' or 'right', to do one-sided chi-squared on the left or right. twophase: Boolean, optional; default=True If True calculate the auto-chisq using both phases of the filter. If False only use the phase of the obtained trigger(s). maxvalued: Boolean, optional; default=False Return the largest auto-chisq at any of the points tested if True. If False, return the sum of auto-chisq at all points tested. Returns ------- dof: int number of degrees of freedom autochisq: Array[float] autochisq values corresponding to the time instances defined by indices """ Nsnr = len(sn) achisq = np.zeros(len(indices)) num_points_all = int(Nsnr/stride) if num_points is None: num_points = num_points_all if (num_points > num_points_all): num_points = num_points_all snrabs = np.abs(sn[indices]) cphi_array = (sn[indices]).real / snrabs sphi_array = (sn[indices]).imag / snrabs start_point = - stride*num_points end_point = stride*num_points+1 if oneside == 'left': achisq_idx_list = np.arange(start_point, 0, stride) elif oneside == 'right': achisq_idx_list = np.arange(stride, end_point, stride) else: achisq_idx_list_pt1 = np.arange(start_point, 0, stride) achisq_idx_list_pt2 = np.arange(stride, end_point, stride) achisq_idx_list = np.append(achisq_idx_list_pt1, achisq_idx_list_pt2) hauto_corr_vec = hautocorr[achisq_idx_list] hauto_norm = hauto_corr_vec.real*hauto_corr_vec.real # REMOVE THIS LINE TO REPRODUCE OLD RESULTS hauto_norm += hauto_corr_vec.imag*hauto_corr_vec.imag chisq_norm = 1.0 - hauto_norm for ip,ind in enumerate(indices): curr_achisq_idx_list = achisq_idx_list + ind cphi = cphi_array[ip] sphi = sphi_array[ip] # By construction, the other "phase" of the SNR is 0 snr_ind = sn[ind].real*cphi + sn[ind].imag*sphi # Wrap index if needed (maybe should fail in this case?) if curr_achisq_idx_list[0] < 0: curr_achisq_idx_list[curr_achisq_idx_list < 0] += Nsnr if curr_achisq_idx_list[-1] > (Nsnr - 1): curr_achisq_idx_list[curr_achisq_idx_list > (Nsnr-1)] -= Nsnr z = corr_sn[curr_achisq_idx_list].real*cphi + \ corr_sn[curr_achisq_idx_list].imag*sphi dz = z - hauto_corr_vec.real*snr_ind curr_achisq_list = dz*dz/chisq_norm if twophase: chisq_norm = 1.0 - hauto_norm z = -corr_sn[curr_achisq_idx_list].real*sphi + \ corr_sn[curr_achisq_idx_list].imag*cphi dz = z - hauto_corr_vec.imag*snr_ind curr_achisq_list += dz*dz/chisq_norm if maxvalued: achisq[ip] = curr_achisq_list.max() else: achisq[ip] = curr_achisq_list.sum() dof = num_points if oneside is None: dof = dof * 2 if twophase: dof = dof * 2 return dof, achisq
[docs] class SingleDetAutoChisq(object): """Class that handles precomputation and memory management for efficiently running the auto chisq in a single detector inspiral analysis. """ def __init__(self, stride, num_points, onesided=None, twophase=False, reverse_template=False, take_maximum_value=False, maximal_value_dof=None): """ Initialize autochisq calculation instance Parameters ----------- stride : int Number of sample points between points at which auto-chisq is calculated. num_points : int Number of sample points at which to calculate auto-chisq in each direction from the trigger onesided : optional, default=None, choices=['left','right'] If None (default), calculate auto-chisq in both directions from the trigger. If left (backwards in time) or right (forwards in time) calculate auto-chisq only in that direction. twophase : optional, default=False If False calculate auto-chisq using only the phase of the trigger. If True, compare also against the orthogonal phase. reverse_template : optional, default=False If true, time-reverse the template before calculating auto-chisq. In this case this is more of a cross-correlation chisq than auto. take_maximum_value : optional, default=False If provided, instead of adding the auto-chisq value at each sample point tested, return only the maximum value. maximal_value_dof : int, required if using take_maximum_value If using take_maximum_value the expected value is not known. This value specifies what to store in the cont_chisq_dof output. """ if stride > 0: self.do = True self.column_name = "cont_chisq" self.table_dof_name = "cont_chisq_dof" self.dof = num_points self.num_points = num_points self.stride = stride self.one_sided = onesided if (onesided is not None): self.dof = self.dof * 2 self.two_phase = twophase if self.two_phase: self.dof = self.dof * 2 self.reverse_template = reverse_template self.take_maximum_value=take_maximum_value if self.take_maximum_value: if maximal_value_dof is None: err_msg = "Must provide the maximal_value_dof keyword " err_msg += "argument if using the take_maximum_value " err_msg += "option." raise ValueError(err_msg) self.dof = maximal_value_dof self._autocor = None self._autocor_id = None else: self.do = False
[docs] def values(self, sn, indices, template, psd, norm, stilde=None, low_frequency_cutoff=None, high_frequency_cutoff=None): """ Calculate the auto-chisq at the specified indices. Parameters ----------- sn : Array[complex] SNR time series of the template for which auto-chisq is being computed. Provided unnormalized. indices : Array[int] List of points at which to calculate auto-chisq template : Pycbc template object The template for which we are calculating auto-chisq psd : Pycbc psd object The PSD of the data being analysed norm : float The normalization factor to apply to sn stilde : Pycbc data object, needed if using reverse-template The data being analysed. Only needed if using reverse-template, otherwise ignored low_frequency_cutoff : float The lower frequency to consider in matched-filters high_frequency_cutoff : float The upper frequency to consider in matched-filters Returns ------- achi_list : TimeSeries of auto veto values - if indices is None then evaluated at all time samples, if not then only at requested sample indices dof: int, approx number of statistical degrees of freedom """ if self.do and (len(indices) > 0): htilde = make_frequency_series(template) # Check if we need to recompute the autocorrelation key = (id(template), id(psd)) if key != self._autocor_id: logging.info("Calculating autocorrelation") if not self.reverse_template: Pt, _, P_norm = matched_filter_core(htilde, htilde, psd=psd, low_frequency_cutoff=low_frequency_cutoff, high_frequency_cutoff=high_frequency_cutoff) Pt = Pt * (1./ Pt[0]) self._autocor = Array(Pt, copy=True) else: Pt, _, P_norm = matched_filter_core(htilde.conj(), htilde, psd=psd, low_frequency_cutoff=low_frequency_cutoff, high_frequency_cutoff=high_frequency_cutoff) # T-reversed template has same norm as forward template # so we can normalize using that # FIXME: Here sigmasq has to be cast to a float or the # code is really slow ... why?? norm_fac = P_norm / float(((template.sigmasq(psd))**0.5)) Pt *= norm_fac self._autocor = Array(Pt, copy=True) self._autocor_id = key logging.info("...Calculating autochisquare") sn = sn*norm if self.reverse_template: assert(stilde is not None) asn, _, ahnrm = matched_filter_core(htilde.conj(), stilde, low_frequency_cutoff=low_frequency_cutoff, high_frequency_cutoff=high_frequency_cutoff, h_norm=template.sigmasq(psd)) correlation_snr = asn * ahnrm else: correlation_snr = sn achi_list = np.array([]) index_list = np.array(indices) dof, achi_list = autochisq_from_precomputed(sn, correlation_snr, self._autocor, index_list, stride=self.stride, num_points=self.num_points, oneside=self.one_sided, twophase=self.two_phase, maxvalued=self.take_maximum_value) self.dof = dof return achi_list, dof else: return None, None
[docs] class SingleDetSkyMaxAutoChisq(SingleDetAutoChisq): """Stub for precessing auto chisq if anyone ever wants to code it up. """ def __init__(self, *args, **kwds): super(SingleDetSkyMaxAutoChisq, self).__init__(*args, **kwds)
[docs] def values(self, *args, **kwargs): if self.do: err_msg = "Precessing single detector sky-max auto chisq has not " err_msg += "been written. If you want to use it, why not help " err_msg += "write it?" raise NotImplementedError(err_msg) else: return None