

 	Installing PyCBC
	Use of PyCBC in Scientific Publications
	Modules	pycbc package	Subpackages	pycbc.catalog package
	pycbc.coordinates package
	pycbc.distributions package
	pycbc.events package
	pycbc.fft package
	pycbc.filter package
	pycbc.frame package
	pycbc.inference package
	pycbc.inject package
	pycbc.io package
	pycbc.live package
	pycbc.neutron_stars package
	pycbc.noise package
	pycbc.population package
	pycbc.psd package
	pycbc.results package
	pycbc.strain package
	pycbc.tmpltbank package
	pycbc.types package
	pycbc.vetoes package
	pycbc.waveform package
	pycbc.workflow package

	Submodules
	pycbc.bin_utils module
	pycbc.boundaries module
	pycbc.conversions module
	pycbc.cosmology module
	pycbc.detector module
	pycbc.dq module
	pycbc.libutils module
	pycbc.mchirp_area module
	pycbc.opt module
	pycbc.pnutils module
	pycbc.pool module
	pycbc.rate module
	pycbc.scheme module
	pycbc.sensitivity module
	pycbc.transforms module
	pycbc.version module
	Module contents

	Index

User Guides

	Library Examples and Interactive Tutorials
	PyCBC inference documentation (pycbc.inference)
	Applications and Workflows

Dev Guides

	Extending PyCBC with external plugins
	Documentation for Developers

 PyCBC

 	
	pycbc
	pycbc package
	pycbc.distributions package
	
 Edit on GitHub

pycbc.distributions package¶

Submodules¶

pycbc.distributions.angular module¶

This modules provides classes for evaluating angular distributions.

	
class pycbc.distributions.angular.CosAngle(**params)[source]¶
	Bases: SinAngle

A cosine distribution. This is the same thing as a sine distribution,
but with the domain shifted to [-pi/2, pi/2]. See SinAngle for more
details.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and
(optionally) their corresponding bounds, as either
boundaries.Bounds instances or tuples. The bounds must be
in [-PI/2, PI/2].

	
name = 'cos_angle'¶
	

	
class pycbc.distributions.angular.SinAngle(**params)[source]¶
	Bases: UniformAngle

A sine distribution; the pdf of each parameter theta is given by:

	..math::
	p(theta) = frac{sin theta}{costheta_0 - costheta_1}, theta_0 leq theta < theta_1,

and 0 otherwise. Here, \(\theta_0, \theta_1\) are the bounds of the
parameter.

The domain of this distribution is [0, pi]. This is accomplished by
putting hard boundaries at [0, pi]. Bounds may be provided to further
limit the range for which the pdf has support. As with UniformAngle,
these are initialized in radians.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and
(optionally) their corresponding bounds, as either
boundaries.Bounds instances or tuples. The bounds must be
in [0,PI]. These are converted to radians for storage. None may also
be passed; in that case, the domain bounds will be used.

	
name = 'sin_angle'¶
	

	
class pycbc.distributions.angular.UniformAngle(cyclic_domain=False, **params)[source]¶
	Bases: Uniform

A uniform distribution in which the dependent variable is between
[0,2pi).

The domain of the distribution may optionally be made cyclic using the
cyclic_domain parameter.

Bounds may be provided to limit the range for which the pdf has support.
If provided, the parameter bounds are in radians.

	Parameters:
		cyclic_domain ({False, bool}) – If True, cyclic bounds on [0, 2pi) are applied to all values when
evaluating the pdf. This is done prior to any additional bounds
specified for a parameter are applied. Default is False.

	**params – The keyword arguments should provide the names of parameters and
(optionally) their corresponding bounds, as either
boundaries.Bounds instances or tuples. The bounds must be
in [0,2PI). These are converted to radians for storage. None may also
be passed; in that case, the domain bounds will be used.

Notes

For more information, see Uniform.

	
apply_boundary_conditions(**kwargs)[source]¶
	Maps values to be in [0, 2pi) (the domain) first, before applying
any additional boundary conditions.

	Parameters:
	**kwargs – The keyword args should be the name of a parameter and value to
apply its boundary conditions to. The arguments need not include
all of the parameters in self.

	Returns:
	A dictionary of the parameter names and the conditioned values.

	Return type:
	dict

	
property domain¶
	Returns the domain of the distribution.

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file.

The parameters for the distribution are retrieved from the section
titled “[section-variable_args]” in the config file. By default,
only the name of the distribution (uniform_angle) needs to be
specified. This will results in a uniform prior on [0, 2pi). To
make the domain cyclic, add cyclic_domain =. To specify boundaries
that are not [0, 2pi), add (min|max)-var arguments, where var
is the name of the variable.

For example, this will initialize a variable called theta with a
uniform distribution on [0, 2pi) without cyclic boundaries:

[{section}-theta]
name = uniform_angle

This will make the domain cyclic on [0, 2pi):

[{section}-theta]
name = uniform_angle
cyclic_domain =

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	UniformAngle

	
name = 'uniform_angle'¶
	

	
class pycbc.distributions.angular.UniformSolidAngle(polar_angle=None, azimuthal_angle=None, polar_bounds=None, azimuthal_bounds=None, azimuthal_cyclic_domain=False)[source]¶
	Bases: BoundedDist

A distribution that is uniform in the solid angle of a sphere. The names
of the two angluar parameters can be specified on initalization.

	Parameters:
		polar_angle ({'theta', str}) – The name of the polar angle.

	azimuthal_angle ({'phi', str}) – The name of the azimuthal angle.

	polar_bounds ({None, tuple}) – Limit the polar angle to the given bounds. If None provided, the polar
angle will vary from 0 (the north pole) to pi (the south pole). The
bounds should be specified as factors of pi. For example, to limit
the distribution to the northern hemisphere, set
polar_bounds=(0,0.5).

	azimuthal_bounds ({None, tuple}) – Limit the azimuthal angle to the given bounds. If None provided, the
azimuthal angle will vary from 0 to 2pi. The
bounds should be specified as factors of pi. For example, to limit
the distribution to the one hemisphere, set azimuthal_bounds=(0,1).

	azimuthal_cyclic_domain ({False, bool}) – Make the domain of the azimuthal angle be cyclic; i.e., azimuthal
values are constrained to be in [0, 2pi) using cyclic boundaries prior
to applying any other boundary conditions and prior to evaluating the
pdf. Default is False.

	
apply_boundary_conditions(**kwargs)[source]¶
	Maps the given values to be within the domain of the azimuthal and
polar angles, before applying any other boundary conditions.

	Parameters:
	**kwargs – The keyword args must include values for both the azimuthal and
polar angle, using the names they were initilialized with. For
example, if polar_angle=’theta’ and azimuthal_angle=`phi, then
the keyword args must be theta={val1}, phi={val2}.

	Returns:
	A dictionary of the parameter names and the conditioned values.

	Return type:
	dict

	
property azimuthal_angle¶
	The name of the azimuthal angle.

	Type:
	str

	
property bounds¶
	The bounds on each angle. The keys are the names of the polar
and azimuthal angles, the values are the minimum and maximum of each,
in radians. For example, if the distribution was initialized with
polar_angle=’theta’, polar_bounds=(0,0.5) then the bounds will have
‘theta’: 0, 1.5707963267948966 as an entry.

	Type:
	dict

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file.

The section must have the names of the polar and azimuthal angles in
the tag part of the section header. For example:

[prior-theta+phi]
name = uniform_solidangle

If nothing else is provided, the default names and bounds of the polar
and azimuthal angles will be used. To specify a different name for
each angle, set the polar-angle and azimuthal-angle attributes. For
example:

[prior-foo+bar]
name = uniform_solidangle
polar-angle = foo
azimuthal-angle = bar

Note that the names of the variable args in the tag part of the section
name must match the names of the polar and azimuthal angles.

Bounds may also be specified for each angle, as factors of pi. For
example:

[prior-theta+phi]
polar-angle = theta
azimuthal-angle = phi
min-theta = 0
max-theta = 0.5

This will return a distribution that is uniform in the upper
hemisphere.

By default, the domain of the azimuthal angle is [0, 2pi). To make
this domain cyclic, add azimuthal_cyclic_domain =.

	Parameters:
		cp (ConfigParser instance) – The config file.

	section (str) – The name of the section.

	variable_args (str) – The names of the parameters for this distribution, separated by
VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	UniformSolidAngle

	
name = 'uniform_solidangle'¶
	

	
property polar_angle¶
	The name of the polar angle.

	Type:
	str

pycbc.distributions.arbitrary module¶

This modules provides classes for evaluating arbitrary distributions from
a file.

	
class pycbc.distributions.arbitrary.Arbitrary(bounds=None, bandwidth='scott', **kwargs)[source]¶
	Bases: BoundedDist

A distribution constructed from a set of parameter values using a kde.
Bounds may be optionally provided to limit the range.

	Parameters:
		bounds (dict, optional) – Independent bounds on one or more parameters may be provided to limit
the range of the kde.

	bandwidth (str, optional) – Set the bandwidth method for the KDE. See
scipy.stats.gaussian_kde() for details. Default is “scott”.

	**params – The keyword arguments should provide the names of the parameters and
a list of their parameter values. If multiple parameters are provided,
a single kde will be produced with dimension equal to the number of
parameters.

	
classmethod from_config(cp, section, variable_args)[source]¶
	Raises a NotImplementedError; to load from a config file, use
FromFile.

	
static get_kde_from_arrays(*arrays)[source]¶
	Constructs a KDE from the given arrays.

	*arrays :
	Each argument should be a 1D numpy array to construct the kde from.
The resulting KDE will have dimension given by the number of
parameters.

	
property kde¶
	

	
name = 'arbitrary'¶
	

	
property params¶
	The list of parameter names.

	Type:
	list of strings

	
rvs(size=1, param=None)[source]¶
	Gives a set of random values drawn from the kde.

	Parameters:
		size ({1, int}) – The number of values to generate; default is 1.

	param ({None, string}) – If provided, will just return values for the given parameter.
Otherwise, returns random values for each parameter.

	Returns:
	The random values in a numpy structured array. If a param was
specified, the array will only have an element corresponding to the
given parameter. Otherwise, the array will have an element for each
parameter in self’s params.

	Return type:
	structured array

	
set_bandwidth(set_bw='scott')[source]¶
	

	
class pycbc.distributions.arbitrary.FromFile(filename=None, datagroup=None, **params)[source]¶
	Bases: Arbitrary

A distribution that reads the values of the parameter(s) from an hdf
file, computes the kde to construct the pdf, and draws random variables
from it.

	Parameters:
		filename (str) – The path to an hdf file containing the values of the parameters that
want to be used to construct the distribution. Each parameter should
be a separate dataset in the hdf file, and all datasets should have
the same size. For example, to give a prior for mass1 and mass2 from
file f, f[‘mass1’] and f[‘mass2’] contain the n values for each
parameter.

	datagroup (str, optional) – The name of the group to look in for the samples. For example, if
datagroup = 'samples', then parameter param will be retrived
from f['samples'][param]. If none provided (the default) the data
sets will be assumed to be in the top level directory of the file.

	**params – The keyword arguments should provide the names of the parameters to be
read from the file and (optionally) their bounds. If no parameters are
provided, it will use all the parameters found in the file. To provide
bounds, specify e.g. mass1=[10,100]. Otherwise, mass1=None.

	
norm¶
	The normalization of the multi-dimensional pdf.

	Type:
	float

	
lognorm¶
	The log of the normalization.

	Type:
	float

	
kde¶
	The kde obtained from the values in the file.

	
property filename¶
	The path to the file containing values for the parameter(s).

	Type:
	str

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file.

The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

The file to construct the distribution from must be provided by setting
filename. Boundary arguments can be provided in the same way as
described in get_param_bounds_from_config.

[{section}-{tag}]
name = fromfile
filename = ra_prior.hdf
min-ra = 0
max-ra = 6.28

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	BoundedDist

	
get_arrays_from_file(params_file, params=None)[source]¶
	Reads the values of one or more parameters from an hdf file and
returns as a dictionary.

	Parameters:
		params_file (str) – The hdf file that contains the values of the parameters.

	params ({None, list}) – If provided, will just retrieve the given parameter names.

	Returns:
	A dictionary of the parameters mapping param_name -> array.

	Return type:
	dict

	
name = 'fromfile'¶
	

pycbc.distributions.bounded module¶

This modules provides classes for evaluating distributions with bounds.

	
class pycbc.distributions.bounded.BoundedDist(**params)[source]¶
	Bases: object

A generic class for storing common properties of distributions in which
each parameter has a minimum and maximum value.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

	
apply_boundary_conditions(**kwargs)[source]¶
	Applies any boundary conditions to the given values (e.g., applying
cyclic conditions, and/or reflecting values off of boundaries). This
is done by running apply_conditions of each bounds in self on the
corresponding value. See boundaries.Bounds.apply_conditions for
details.

	Parameters:
	**kwargs – The keyword args should be the name of a parameter and value to
apply its boundary conditions to. The arguments need not include
all of the parameters in self. Any unrecognized arguments are
ignored.

	Returns:
	A dictionary of the parameter names and the conditioned values.

	Return type:
	dict

	
property bounds¶
	A dictionary of the parameter names and their bounds.

	Type:
	dict

	
cdfinv(**kwds)[source]¶
	Return the inverse cdf to map the unit interval to parameter bounds.
You must provide a keyword for every parameter.

	
classmethod from_config(cp, section, variable_args, bounds_required=False)[source]¶
	Returns a distribution based on a configuration file. The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	bounds_required ({False, bool}) – If True, raise a ValueError if a min and max are not provided for
every parameter. Otherwise, the prior will be initialized with the
parameter set to None. Even if bounds are not required, a
ValueError will be raised if only one bound is provided; i.e.,
either both bounds need to provided or no bounds.

	Returns:
	A distribution instance from the pycbc.distribution subpackage.

	Return type:
	BoundedDist

	
logpdf(**kwargs)[source]¶
	Returns the log of the pdf at the given values. The keyword
arguments must contain all of parameters in self’s params.
Unrecognized arguments are ignored. Any boundary conditions are
applied to the values before the pdf is evaluated.

	
property params¶
	The list of parameter names.

	Type:
	list of strings

	
pdf(**kwargs)[source]¶
	Returns the pdf at the given values. The keyword arguments must
contain all of parameters in self’s params. Unrecognized arguments are
ignored. Any boundary conditions are applied to the values before the
pdf is evaluated.

	
rvs(size=1, **kwds)[source]¶
	Draw random value

	
pycbc.distributions.bounded.bounded_from_config(cls, cp, section, variable_args, bounds_required=False, additional_opts=None)[source]¶
	Returns a bounded distribution based on a configuration file. The
parameters for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

	Parameters:
		cls (pycbc.prior class) – The class to initialize with.

	cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	bounds_required ({False, bool}) – If True, raise a ValueError if a min and max are not provided for
every parameter. Otherwise, the prior will be initialized with the
parameter set to None. Even if bounds are not required, a
ValueError will be raised if only one bound is provided; i.e.,
either both bounds need to provided or no bounds.

	additional_opts ({None, dict}) – Provide additional options to be passed to the distribution class;
should be a dictionary specifying option -> value. If an option is
provided that also exists in the config file, the value provided will
be used instead of being read from the file.

	Returns:
	An instance of the given class.

	Return type:
	cls

	
pycbc.distributions.bounded.get_param_bounds_from_config(cp, section, tag, param)[source]¶
	Gets bounds for the given parameter from a section in a config file.

Minimum and maximum values for bounds are specified by adding
min-{param} and max-{param} options, where {param} is the name of
the parameter. The types of boundary (open, closed, or reflected) to create
may also be specified by adding options btype-min-{param} and
btype-max-{param}. Cyclic conditions can be adding option
cyclic-{param}. If no btype arguments are provided, the
left bound will be closed and the right open.

For example, the following will create right-open bounds for parameter
foo:

[{section}-{tag}]
min-foo = -1
max-foo = 1

This would make the boundaries cyclic:

[{section}-{tag}]
min-foo = -1
max-foo = 1
cyclic-foo =

For more details on boundary types and their meaning, see
boundaries.Bounds.

If the parameter is not found in the section will just return None (in
this case, all btype and cyclic arguments are ignored for that
parameter). If bounds are specified, both a minimum and maximum must be
provided, else a Value or Type Error will be raised.

	Parameters:
		cp (ConfigParser instance) – The config file.

	section (str) – The name of the section.

	tag (str) – Any tag in the section name. The full section name searched for in
the config file is {section}(-{tag}).

	param (str) – The name of the parameter to retrieve bounds for.

	Returns:
	bounds – If bounds were provided, a boundaries.Bounds instance
representing the bounds. Otherwise, None.

	Return type:
	{Bounds instance | None}

pycbc.distributions.constraints module¶

This modules provides classes for evaluating multi-dimensional constraints.

	
class pycbc.distributions.constraints.Constraint(constraint_arg, static_args=None, transforms=None, **kwargs)[source]¶
	Bases: object

Creates a constraint that evaluates to True if parameters obey
the constraint and False if they do not.

	
name = 'custom'¶
	

	
class pycbc.distributions.constraints.SupernovaeConvexHull(constraint_arg, transforms=None, **kwargs)[source]¶
	Bases: Constraint

Pre defined constraint for core-collapse waveforms that checks
whether a given set of coefficients lie within the convex hull of
the coefficients of the principal component basis vectors.

	
name = 'supernovae_convex_hull'¶
	

	
required_parameters = ['coeff_0', 'coeff_1']¶
	

pycbc.distributions.external module¶

This modules provides classes for evaluating PDF, logPDF, CDF and inverse CDF
from external arbitrary distributions, and drawing samples from them.

	
class pycbc.distributions.external.DistributionFunctionFromFile(params=None, file_path=None, column_index=None, **kwargs)[source]¶
	Bases: External

	Evaluating PDF, logPDF, CDF and inverse CDF from the external
	density function.

Instances of this class can be called like a distribution in the .ini file,
when used with pycbc.distributions.external.External. Please see the
example in the External class.

	Parameters:
		parameter ({'file_path', 'column_index'}) – The path of the external density function’s .txt file, and the
column index of the density distribution. By default, the first column
should be the values of a certain parameter, such as “mass”, other
columns should be the corresponding density values (as a function of
that parameter). If you add the name of the parameter in the first
row, please add the ‘#’ at the beginning.

	**kwargs – All other keyword args are passed to scipy.integrate.quad to control
the numerical accuracy of the inverse CDF.
If not be provided, will use the default values in self.__init__.

Notes

This class is different from pycbc.distributions.arbitrary.FromFile,
which needs samples from the hdf file to construct the PDF by using KDE.
This class reads in any continuous functions of the parameter.

	
name = 'external_func_fromfile'¶
	

	
class pycbc.distributions.external.External(params=None, logpdf=None, rvs=None, cdfinv=None, **kwds)[source]¶
	Bases: object

Distribution defined by external cdfinv and logpdf functions

To add to an inference configuration file:

[prior-param1+param2]
name = external
module = custom_mod
logpdf = custom_function_name
cdfinv = custom_function_name2

Or call DistributionFunctionFromFile in the .ini file:

[prior-param]
name = external_func_fromfile
module = pycbc.distributions.external
file_path = path
column_index = index
logpdf = _logpdf
cdfinv = _cdfinv

	Parameters:
		params (list) – list of parameter names

	custom_mod (module) – module from which logpdf and cdfinv functions can be imported

	logpdf (function) – function which returns the logpdf

	cdfinv (function) – function which applies the invcdf

Examples

To instantate by hand and example of function format. You must provide
the logpdf function, and you may either provide the rvs or cdfinv function.
If the cdfinv is provided, but not the rvs, the random values will
be calculated using the cdfinv function.

>>> import numpy
>>> params = ['x', 'y']
>>> def logpdf(x=None, y=None):
... p = numpy.ones(len(x))
... return p
>>>
>>> def cdfinv(**kwds):
... return kwds
>>> e = External(['x', 'y'], logpdf, cdfinv=cdfinv)
>>> e.rvs(size=10)

	
apply_boundary_conditions(**params)[source]¶
	

	
classmethod from_config(cp, section, variable_args)[source]¶
	

	
name = 'external'¶
	

	
rvs(size=1, **kwds)[source]¶
	Draw random value

pycbc.distributions.fixedsamples module¶

This modules provides classes for evaluating distributions based on a fixed
set of points

	
class pycbc.distributions.fixedsamples.FixedSamples(params, samples)[source]¶
	Bases: object

A distribution consisting of a collection of a large number of fixed points.
Only these values can be drawn from, so the number of points may need to be
large to properly reflect the paramter space. This distribution is intended
to aid in using nested samplers for semi-abitrary or complicated
distributions where it is possible to provide or draw samples but less
straightforward to provide an analytic invcdf. This class numerically
approximates the invcdf for 1 or 2 dimensional distributions
(but no higher).

	Parameters:
		params – This of parameters this distribution should use

	samples (dict of arrays or FieldArray) – Sampled points of the distribution. May contain transformed parameters
which are different from the original distribution. If so, an inverse
mapping is provided to associate points with other parameters provided.

	
apply_boundary_conditions(**params)[source]¶
	Apply boundary conditions (none here)

	
cdfinv(**original)[source]¶
	Map unit cube to parameters in the space

	
classmethod from_config(cp, section, tag)[source]¶
	Return instance based on config file

Return a new instance based on the config file. This will draw from
a single distribution section provided in the config file and
apply a single transformation section if desired. If a transformation
is applied, an inverse mapping is also provided for use in the config
file.

	
name = 'fixed_samples'¶
	

	
rvs(size=1, **kwds)[source]¶
	Draw random value

pycbc.distributions.gaussian module¶

This modules provides classes for evaluating Gaussian distributions.

	
class pycbc.distributions.gaussian.Gaussian(**params)[source]¶
	Bases: BoundedDist

A Gaussian distribution on the given parameters; the parameters are
independent of each other.

Bounds can be provided on each parameter, in which case the distribution
will be a truncated Gaussian distribution. The PDF of a truncated
Gaussian distribution is given by:

\[p(x|a, b, \mu,\sigma) = \frac{1}{\sqrt{2 \pi \sigma^2}}\frac{e^{- \frac{\left(x - \mu \right)^2}{2 \sigma^2}}}{\Phi(b|\mu, \sigma) - \Phi(a|\mu, \sigma)},\]

where \(\mu\) is the mean, \(\sigma^2\) is the variance,
\(a,b\) are the bounds, and \(\Phi\) is the cumulative distribution
of an unbounded normal distribution, given by:

\[\Phi(x|\mu, \sigma) = \frac{1}{2}\left[1 + \mathrm{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right].\]

Note that if \([a,b) = [-\infty, \infty)\), this reduces to a standard
Gaussian distribution.

Instances of this class can be called like a function. By default, logpdf
will be called, but this can be changed by setting the class’s __call__
method to its pdf method.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and
(optionally) some bounds, as either a tuple or a
boundaries.Bounds instance. The mean and variance of each
parameter can be provided by additional keyword arguments that have
_mean and _var adding to the parameter name. For example,
foo=(-2,10), foo_mean=3, foo_var=2 would create a truncated Gaussian
with mean 3 and variance 2, bounded between \([-2, 10)\). If no
mean or variance is provided, the distribution will have 0 mean and
unit variance. If None is provided for the bounds, the distribution
will be a normal, unbounded Gaussian (equivalent to setting the bounds
to [-inf, inf)).

Examples

Create an unbounded Gaussian distribution with zero mean and unit variance:
>>> dist = distributions.Gaussian(mass1=None)

Create a bounded Gaussian distribution on \([1,10)\) with a mean of 3
and a variance of 2:
>>> dist = distributions.Gaussian(mass1=(1,10), mass1_mean=3, mass1_var=2)

Create a bounded Gaussian distribution with the same parameters, but with
cyclic boundary conditions:
>>> dist = distributions.Gaussian(mass1=Bounds(1,10, cyclic=True), mass1_mean=3, mass1_var=2)

	
cdf(param, value)[source]¶
	Returns the CDF of the given parameter value.

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a Gaussian distribution based on a configuration file. The
parameters for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

Boundary arguments should be provided in the same way as described in
get_param_bounds_from_config. In addition, the mean and variance of
each parameter can be specified by setting {param}_mean and
{param}_var, respectively. For example, the following would create a
truncated Gaussian distribution between 0 and 6.28 for a parameter
called phi with mean 3.14 and variance 0.5 that is cyclic:

[{section}-{tag}]
min-phi = 0
max-phi = 6.28
phi_mean = 3.14
phi_var = 0.5
cyclic =

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	Gaussian

	
property mean¶
	

	
name = 'gaussian'¶
	

	
property var¶
	

pycbc.distributions.joint module¶

This module provides classes to describe joint distributions

	
class pycbc.distributions.joint.JointDistribution(variable_args, *distributions, **kwargs)[source]¶
	Bases: object

Callable class that calculates the joint distribution built from a set of
distributions.

	Parameters:
		variable_args (list) – A list of strings that contain the names of the variable parameters and
the order they are expected when the class is called.

	*distributions – The rest of the arguments must be instances of distributions describing
the individual distributions on the variable parameters.
A single distribution may contain
multiple parameters. The set of all params across the distributions
(retrieved from the distributions’ params attribute) must be the same
as the set of variable_args provided.

	**kwargs – Valid keyword arguments include:
constraints : a list of functions that accept a dict of parameters
with the parameter name as the key. If the constraint is satisfied the
function should return True, if the constraint is violated, then the
function should return False.
n_test_samples : number of random draws used to fix pdf normalization
factor after applying constraints.

	
variable_args¶
	The parameters expected when the evaluator is called.

	Type:
	tuple

	
distributions¶
	The distributions for the parameters.

	Type:
	list

	
constraints¶
	A list of functions to test if parameter values obey multi-dimensional
constraints.

	Type:
	list

Examples

An example of creating a joint distribution with constraint that total mass must
be below 30.

>>> from pycbc.distributions import Uniform, JointDistribution
>>> def mtotal_lt_30(params):
 ... return params["mass1"] + params["mass2"] < 30
>>> mass_lim = (2, 50)
>>> uniform_prior = Uniform(mass1=mass_lim, mass2=mass_lim)
>>> prior_eval = JointDistribution(["mass1", "mass2"], uniform_prior,
 ... constraints=[mtotal_lt_30])
>>> print(prior_eval(mass1=20, mass2=1))

	
apply_boundary_conditions(**params)[source]¶
	Applies each distributions’ boundary conditions to the given list
of parameters, returning a new list with the conditions applied.

	Parameters:
	**params – Keyword arguments should give the parameters to apply the
conditions to.

	Returns:
	A dictionary of the parameters after each distribution’s
apply_boundary_conditions function has been applied.

	Return type:
	dict

	
property bounds¶
	Get the dict of boundaries

	
cdfinv(**original)[source]¶
	Apply the inverse cdf to the array of values [0, 1]. Every
variable parameter must be given as a keyword argument.

	
contains(params)[source]¶
		Evaluates whether the given parameters satisfy the boundary
	conditions, boundaries, and constraints. This method is different
from within_constraints, that method only check the constraints.

	Parameters:
	params (dict, FieldArray, numpy.record, or numpy.ndarray) – The parameter values to evaluate.

	Returns:
	If params was an array, or if params a dictionary and one or more
of the parameters are arrays, will return an array of booleans.
Otherwise, a boolean.

	Return type:
	(array of) bool

	
property cyclic¶
	Get list of which parameters are cyclic

	
name = 'joint'¶
	

	
rvs(size=1)[source]¶
	Rejection samples the parameter space.

	
property well_reflected¶
	Get list of which parameters are well reflected

	
within_constraints(params)[source]¶
	Evaluates whether the given parameters satisfy the constraints.

	Parameters:
	params (dict, FieldArray, numpy.record, or numpy.ndarray) – The parameter values to evaluate.

	Returns:
	If params was an array, or if params a dictionary and one or more
of the parameters are arrays, will return an array of booleans.
Otherwise, a boolean.

	Return type:
	(array of) bool

pycbc.distributions.mass module¶

This modules provides classes for evaluating distributions for mchirp and
q (i.e., mass ratio) from uniform component mass.

	
class pycbc.distributions.mass.MchirpfromUniformMass1Mass2(dim=2, **params)[source]¶
	Bases: UniformPowerLaw

A distribution for chirp mass from uniform component mass +
constraints given by chirp mass. This is a special case for UniformPowerLaw
with index 1. For more details see UniformPowerLaw.

The parameters (i.e. **params) are independent of each other. Instances
of this class can be called like a function. By default, logpdf will be
called, but this can be changed by setting the class’s __call__ method
to its pdf method.

Derivation for the probability density function:

\[P(m_1,m_2)dm_1dm_2 = P(\mathcal{M}_c,q)d\mathcal{M}_cdq\]

Where \(\mathcal{M}_c\) is chirp mass and \(q\) is mass ratio,
\(m_1\) and \(m_2\) are component masses. The jacobian to transform
chirp mass and mass ratio to component masses is

\[\frac{\partial(m_1,m_2)}{\partial(\mathcal{M}_c,q)} = \
\mathcal{M}_c \left(\frac{1+q}{q^3}\right)^{2/5}\]

(https://github.com/gwastro/pycbc/blob/master/pycbc/transforms.py#L416.)

Because \(P(m_1,m_2) = const\), then

\[P(\mathcal{M}_c,q) = P(\mathcal{M}_c)P(q)\propto
\mathcal{M}_c \left(\frac{1+q}{q^3}\right)^{2/5}`.\]

Therefore,

\[P(\mathcal{M}_c) \propto \mathcal{M}_c\]

and

\[P(q) \propto \left(\frac{1+q}{q^3}\right)^{2/5}\]

Examples

Generate 10000 random numbers from this distribution in [5,100]

>>> from pycbc import distributions as dist
>>> minmc = 5, maxmc = 100, size = 10000
>>> mc = dist.MchirpfromUniformMass1Mass2(value=(minmc,maxmc)).rvs(size)

The settings in the configuration file for pycbc_inference should be

[variable_params]
mchirp =
[prior-mchirp]
name = mchirp_from_uniform_mass1_mass2
min-mchirp = 10
max-mchirp = 80

	Parameters:
	**params – The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

	
name = 'mchirp_from_uniform_mass1_mass2'¶
	

	
class pycbc.distributions.mass.QfromUniformMass1Mass2(**params)[source]¶
	Bases: BoundedDist

A distribution for mass ratio (i.e., q) from uniform component mass
+ constraints given by q.

The parameters (i.e. **params) are independent of each other. Instances
of this class can be called like a function. By default, logpdf will be
called, but this can be changed by setting the class’s __call__ method
to its pdf method.

For mathematical derivation see the documentation above in the class
MchirpfromUniformMass1Mass2.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

Examples

Generate 10000 random numbers from this distribution in [1,8]

>>> from pycbc import distributions as dist
>>> minq = 1, maxq = 8, size = 10000
>>> q = dist.QfromUniformMass1Mass2(value=(minq,maxq)).rvs(size)

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file. The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

Example:

[variable_params]
q =
[prior-q]
name = q_from_uniform_mass1_mass2
min-q = 1
max-q = 8

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	
	QfromUniformMass1Mass2 – A distribution instance from the pycbc.distributions.bounded

	module.

	
property lognorm¶
	The log of the normalization.

	Type:
	float

	
name = 'q_from_uniform_mass1_mass2'¶
	

	
property norm¶
	The normalization of the multi-dimensional pdf.

	Type:
	float

	
rvs(size=1, param=None)[source]¶
	Gives a set of random values drawn from this distribution.

	Parameters:
		size ({1, int}) – The number of values to generate; default is 1.

	param ({None, string}) – If provided, will just return values for the given parameter.
Otherwise, returns random values for each parameter.

	Returns:
	The random values in a numpy structured array. If a param was
specified, the array will only have an element corresponding to the
given parameter. Otherwise, the array will have an element for each
parameter in self’s params.

	Return type:
	structured array

pycbc.distributions.power_law module¶

This modules provides classes for evaluating distributions where the
probability density function is a power law.

	
class pycbc.distributions.power_law.UniformPowerLaw(dim=None, **params)[source]¶
	Bases: BoundedDist

For a uniform distribution in power law. The parameters are
independent of each other. Instances of this class can be called like
a function. By default, logpdf will be called, but this can be changed
by setting the class’s __call__ method to its pdf method.

The cumulative distribution function (CDF) will be the ratio of volumes:

\[F(r) = \frac{V(r)}{V(R)}\]

Where \(R\) is the radius of the sphere. So we can write our
probability density function (PDF) as:

\[f(r) = c r^n\]

For generality we use \(n\) for the dimension of the volume element,
eg. \(n=2\) for a 3-dimensional sphere. And use
\(c\) as a general constant.

So now we calculate the CDF in general for this type of PDF:

\[F(r) = \int f(r) dr = \int c r^n dr = \frac{1}{n + 1} c r^{n + 1} + k\]

Now with the definition of the CDF at radius \(r_{l}\) is equal to 0
and at radius \(r_{h}\) is equal to 1 we find that the constant from
integration from this system of equations:

\[1 = \frac{1}{n + 1} c ((r_{h})^{n + 1} - (r_{l})^{n + 1}) + k\]

Can see that \(c = (n + 1) / ((r_{h})^{n + 1} - (r_{l})^{n + 1}))\).
And \(k\) is:

\[k = - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}}\]

Can see that \(c= \frac{n + 1}{R^{n + 1}}\). So can see that the CDF is:

\[F(r) = \frac{1}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} r^{n + 1} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}}\]

And the PDF is the derivative of the CDF:

\[f(r) = \frac{(n + 1)}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} (r)^n\]

Now we use the probabilty integral transform method to get sampling on
uniform numbers from a continuous random variable. To do this we find
the inverse of the CDF evaluated for uniform numbers:

\[F(r) = u = \frac{1}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} r^{n + 1} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}}\]

And find \(F^{-1}(u)\) gives:

\[u = \frac{1}{n + 1} \frac{(r_{h})^{n + 1} - (r_{l})^{n + 1}} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}}\]

And solving for \(r\) gives:

\[r = (((r_{h})^{n + 1} - (r_{l})^{n + 1}) u + (r_{l})^{n + 1})^{\frac{1}{n + 1}}\]

Therefore the radius can be sampled by taking the n-th root of uniform
numbers and multiplying by the radius offset by the lower bound radius.

	**params :
	The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

	
dim¶
	The dimension of volume space. In the notation above dim
is \(n+1\). For a 3-dimensional sphere this is 3.

	Type:
	int

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file. The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	Uniform

	
property lognorm¶
	The log of the normalization.

	Type:
	float

	
name = 'uniform_power_law'¶
	

	
property norm¶
	The normalization of the multi-dimensional pdf.

	Type:
	float

	
class pycbc.distributions.power_law.UniformRadius(dim=3, **params)[source]¶
	Bases: UniformPowerLaw

For a uniform distribution in volume using spherical coordinates, this
is the distriubtion to use for the radius.

For more details see UniformPowerLaw.

	
name = 'uniform_radius'¶
	

pycbc.distributions.qnm module¶

	
class pycbc.distributions.qnm.UniformF0Tau(f0=None, tau=None, final_mass=None, final_spin=None, rdfreq='f0', damping_time='tau', norm_tolerance=0.001, norm_seed=0)[source]¶
	Bases: Uniform

A distribution uniform in QNM frequency and damping time.

Constraints may be placed to exclude frequencies and damping times
corresponding to specific masses and spins.

To ensure a properly normalized pdf that accounts for the constraints
on final mass and spin, a renormalization factor is calculated upon
initialization. This is calculated numerically: f0 and tau are drawn
randomly, then the norm is scaled by the fraction of points that yield
final masses and spins within the constraints. The norm_tolerance keyword
arguments sets the error on the estimate of the norm from this numerical
method. If this value is too large, such that no points are found in
the allowed region, a ValueError is raised.

	Parameters:
		f0 (tuple or boundaries.Bounds) – The range of QNM frequencies (in Hz).

	tau (tuple or boundaries.Bounds) – The range of QNM damping times (in s).

	final_mass (tuple or boundaries.Bounds, optional) – The range of final masses to allow. Default is [0,inf).

	final_spin (tuple or boundaries.Bounds, optional) – The range final spins to allow. Must be in [-0.996, 0.996], which is
the default.

	rdfreq (str, optional) – Use the given string as the name for the f0 parameter. Default is ‘f0’.

	damping_time (str, optional) – Use the given string as the name for the tau parameter. Default is
‘tau’.

	norm_tolerance (float, optional) – The tolerance on the estimate of the normalization. Default is 1e-3.

	norm_seed (int, optional) – Seed to use for the random number generator when estimating the norm.
Default is 0. After the norm is estimated, the random number generator
is set back to the state it was in upon initialization.

Examples

Create a distribution:

>>> dist = UniformF0Tau(f0=(10., 2048.), tau=(1e-4,1e-2))

Check that all random samples drawn from the distribution yield final
masses > 1:

>>> from pycbc import conversions
>>> samples = dist.rvs(size=1000)
>>> (conversions.final_mass_from_f0_tau(samples['f0'],
 samples['tau']) > 1.).all()
True

Create a distribution with tighter bounds on final mass and spin:

>>> dist = UniformF0Tau(f0=(10., 2048.), tau=(1e-4,1e-2),
 final_mass=(20., 200.), final_spin=(0,0.996))

Check that all random samples drawn from the distribution are in the
final mass and spin constraints:

>>> samples = dist.rvs(size=1000)
>>> (conversions.final_mass_from_f0_tau(samples['f0'],
 samples['tau']) >= 20.).all()
True
>>> (conversions.final_mass_from_f0_tau(samples['f0'],
 samples['tau']) < 200.).all()
True
>>> (conversions.final_spin_from_f0_tau(samples['f0'],
 samples['tau']) >= 0.).all()
True
>>> (conversions.final_spin_from_f0_tau(samples['f0'],
 samples['tau']) < 0.996).all()
True

	
classmethod from_config(cp, section, variable_args)[source]¶
	Initialize this class from a config file.

Bounds on f0, tau, final_mass and final_spin should
be specified by providing min-{param} and max-{param}. If
the f0 or tau param should be renamed, rdfreq and
damping_time should be provided; these must match
variable_args. If rdfreq and damping_time are not
provided, variable_args are expected to be f0 and tau.

Only min/max-f0 and min/max-tau need to be provided.

Example:

[{section}-f0+tau]
name = uniform_f0_tau
min-f0 = 10
max-f0 = 2048
min-tau = 0.0001
max-tau = 0.010
min-final_mass = 10

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – WorkflowConfigParser instance to read.

	section (str) – The name of the section to read.

	variable_args (str) – The name of the variable args. These should be separated by
pycbc.VARARGS_DELIM.

	Returns:
	This class initialized with the parameters provided in the config
file.

	Return type:
	UniformF0Tau

	
name = 'uniform_f0_tau'¶
	

	
rvs(size=1)[source]¶
	Draw random samples from this distribution.

	Parameters:
	size (int, optional) – The number of draws to do. Default is 1.

	Returns:
	A structured array of the random draws.

	Return type:
	array

pycbc.distributions.sky_location module¶

This modules provides classes for evaluating sky distributions in
right ascension and declination.

	
class pycbc.distributions.sky_location.FisherSky(**params)[source]¶
	Bases: object

A distribution that returns a random angle drawn from an approximate
Von_Mises-Fisher distribution. Assumes that the Fisher concentration
parameter is large, so that we can draw the samples from a simple
rotationally-invariant distribution centered at the North Pole (which
factors as a uniform distribution for the right ascension, and a Rayleigh
distribution for the declination, as described in
Fabrycky and Winn 2009 ApJ 696 1230) and then rotate the samples to be
centered around the specified mean position. As in UniformSky, the
declination varies from π/2 to -π/2 and the right ascension varies from
0 to 2π.

	Parameters:
		mean_ra (float) – RA of the center of the distribution.

	mean_dec (float) – Declination of the center of the distribution.

	sigma (float) – Spread of the distribution. For the precise interpretation, see Eq 8
of Briggs et al 1999 ApJS 122 503. This should be smaller than
about 20 deg for the approximation to be valid.

	angle_unit (str) – Unit for the angle parameters: either “deg” or “rad”.

	
classmethod from_config(cp, section, variable_args)[source]¶
	

	
name = 'fisher_sky'¶
	

	
property params¶
	

	
rvs(size)[source]¶
	

	
class pycbc.distributions.sky_location.UniformSky(polar_angle=None, azimuthal_angle=None, polar_bounds=None, azimuthal_bounds=None, azimuthal_cyclic_domain=False)[source]¶
	Bases: UniformSolidAngle

A distribution that is uniform on the sky. This is the same as
UniformSolidAngle, except that the polar angle varies from pi/2 (the north
pole) to -pi/2 (the south pole) instead of 0 to pi. Also, the default
names are “dec” (declination) for the polar angle and “ra” (right
ascension) for the azimuthal angle, instead of “theta” and “phi”.

	
name = 'uniform_sky'¶
	

pycbc.distributions.spins module¶

This modules provides spin distributions of CBCs.

	
class pycbc.distributions.spins.IndependentChiPChiEff(mass1=None, mass2=None, chi_eff=None, chi_a=None, xi_bounds=None, nsamples=None, seed=None)[source]¶
	Bases: Arbitrary

A distribution such that \(\chi_{\mathrm{eff}}\) and
\(\chi_p\) are uniform and independent of each other.

To ensure constraints are applied correctly, this distribution produces all
three components of both spins as well as the component masses.

	Parameters:
		mass1 (BoundedDist, Bounds, or tuple) – The distribution or bounds to use for mass1. Must be either a
BoundedDist giving the distribution on mass1, or bounds (as
either a Bounds instance or a tuple) giving the minimum and maximum
values to use for mass1. If the latter, a Uniform distribution will
be used.

	mass2 (BoundedDist, Bounds, or tuple) – The distribution or bounds to use for mass2. Syntax is the same as
mass1.

	chi_eff (BoundedDist, Bounds, or tuple; optional) – The distribution or bounds to use for \(chi_eff\). Syntax is the
same as mass1, except that None may also be passed. In that case,
(-1, 1) will be used for the bounds. Default is None.

	chi_a (BoundedDist, Bounds, or tuple; optional) – The distribution or bounds to use for \(chi_a\). Syntax is the
same as mass1, except that None may also be passed. In that case,
(-1, 1) will be used for the bounds. Default is None.

	xi_bounds (Bounds or tuple, optional) – The bounds to use for \(\xi_1\) and \(\xi_2\). Must be
\(\in (0, 1)\). If None (the default), will be (0, 1).

	nsamples (int, optional) – The number of samples to use for the internal kde. The larger the
number of samples, the more accurate the pdf will be, but the longer
it will take to evaluate. Default is 10000.

	seed (int, optional) – Seed value to use for the number generator for the kde. The current
random state of numpy will be saved prior to setting the seed. After
the samples are generated, the state will be set back to what it was.
If None provided, will use 0.

	
apply_boundary_conditions(**kwargs)[source]¶
	Applies any boundary conditions to the given values (e.g., applying
cyclic conditions, and/or reflecting values off of boundaries). This
is done by running apply_conditions of each bounds in self on the
corresponding value. See boundaries.Bounds.apply_conditions for
details.

	Parameters:
	**kwargs – The keyword args should be the name of a parameter and value to
apply its boundary conditions to. The arguments need not include
all of the parameters in self. Any unrecognized arguments are
ignored.

	Returns:
	A dictionary of the parameter names and the conditioned values.

	Return type:
	dict

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file. The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
prior.VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance.

	Return type:
	IndependentChiPChiEff

	
name = 'independent_chip_chieff'¶
	

	
rvs(size=1, **kwargs)[source]¶
	Returns random values for all of the parameters.

pycbc.distributions.uniform module¶

This modules provides classes for evaluating uniform distributions.

	
class pycbc.distributions.uniform.Uniform(**params)[source]¶
	Bases: BoundedDist

A uniform distribution on the given parameters. The parameters are
independent of each other. Instances of this class can be called like
a function. By default, logpdf will be called, but this can be changed
by setting the class’s __call__ method to its pdf method.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

Examples

Create a 2 dimensional uniform distribution:

>>> from pycbc import distributions
>>> dist = distributions.Uniform(mass1=(10.,50.), mass2=(10.,50.))

Get the log of the pdf at a particular value:

>>> dist.logpdf(mass1=25., mass2=10.)
 -7.3777589082278725

Do the same by calling the distribution:

>>> dist(mass1=25., mass2=10.)
 -7.3777589082278725

Generate some random values:

>>> dist.rvs(size=3)
 array([(36.90885758394699, 51.294212757995254),
 (39.109058546060346, 13.36220145743631),
 (34.49594465315212, 47.531953033719454)],
 dtype=[('mass1', '<f8'), ('mass2', '<f8')])

Initialize a uniform distribution using a boundaries.Bounds instance,
with cyclic bounds:

>>> dist = distributions.Uniform(phi=Bounds(10, 50, cyclic=True))

Apply boundary conditions to a value:

>>> dist.apply_boundary_conditions(phi=60.)
 {'mass1': array(20.0)}

The boundary conditions are applied to the value before evaluating the pdf;
note that the following returns a non-zero pdf. If the bounds were not
cyclic, the following would return 0:

>>> dist.pdf(phi=60.)
 0.025

	
classmethod from_config(cp, section, variable_args)[source]¶
	Returns a distribution based on a configuration file. The parameters
for the distribution are retrieved from the section titled
“[section-variable_args]” in the config file.

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the distribution
options.

	section (str) – Name of the section in the configuration file.

	variable_args (str) – The names of the parameters for this distribution, separated by
VARARGS_DELIM. These must appear in the “tag” part
of the section header.

	Returns:
	A distribution instance from the pycbc.inference.prior module.

	Return type:
	Uniform

	
property lognorm¶
	The log of the normalization

	Type:
	float

	
name = 'uniform'¶
	

	
property norm¶
	The normalization of the multi-dimensional pdf.

	Type:
	float

pycbc.distributions.uniform_log module¶

This modules provides classes for evaluating distributions whose logarithm
are uniform.

	
class pycbc.distributions.uniform_log.UniformLog10(**params)[source]¶
	Bases: Uniform

A uniform distribution on the log base 10 of the given parameters.
The parameters are independent of each other. Instances of this class can
be called like a function. By default, logpdf will be called.

	Parameters:
	**params – The keyword arguments should provide the names of parameters and their
corresponding bounds, as either tuples or a boundaries.Bounds
instance.

	
name = 'uniform_log10'¶
	

pycbc.distributions.utils module¶

This module provides functions for drawing samples from a standalone .ini file
in a Python script, rather than in the command line.

	
pycbc.distributions.utils.draw_samples_from_config(path, num=1, seed=150914)[source]¶
	Generate sampling points from a standalone .ini file.

	Parameters:
		path (str) – The path to the .ini file.

	num (int) – The number of samples.

	seed (int) – The random seed for sampling.

	Returns:
	samples – The parameter values and names of sample(s).

	Return type:
	pycbc.io.record.FieldArray

Examples

Draw a sample from the distribution defined in the .ini file:

>>> import numpy as np
>>> from pycbc.distributions.utils import draw_samples_from_config

>>> # A path to the .ini file.
>>> CONFIG_PATH = "./pycbc_bbh_prior.ini"
>>> random_seed = np.random.randint(low=0, high=2**32-1)
>>> sample = draw_samples_from_config(
>>> path=CONFIG_PATH, num=1, seed=random_seed)

>>> # Print all parameters.
>>> print(sample.fieldnames)
>>> print(sample)
>>> # Print a certain parameter, for example 'mass1'.
>>> print(sample[0]['mass1'])

	
pycbc.distributions.utils.prior_from_config(cp, prior_section='prior')[source]¶
	Loads a prior distribution from the given config file.

	Parameters:
		cp (pycbc.workflow.WorkflowConfigParser) – The config file to read.

	sections (list of str, optional) – The sections to retrieve the prior from. If None (the default),
will look in sections starting with ‘prior’.

	Returns:
	The prior distribution.

	Return type:
	distributions.JointDistribution

Module contents¶

This modules provides classes and functions for drawing and calculating the
probability density function of distributions.

	
pycbc.distributions.read_constraints_from_config(cp, transforms=None, static_args=None, constraint_section='constraint')[source]¶
	Loads parameter constraints from a configuration file.

	Parameters:
		cp (WorkflowConfigParser) – An open config parser to read from.

	transforms (list, optional) – List of transforms to apply to parameters before applying constraints.

	static_args (dict, optional) – Dictionary of static parameters and their values to be applied
to constraints.

	constraint_section (str, optional) – The section to get the constraints from. Default is ‘constraint’.

	Returns:
	List of Constraint objects. Empty if no constraints were provided.

	Return type:
	list

	
pycbc.distributions.read_distributions_from_config(cp, section='prior')[source]¶
	Returns a list of PyCBC distribution instances for a section in the
given configuration file.

	Parameters:
		cp (WorflowConfigParser) – An open config file to read.

	section ({"prior", string}) – Prefix on section names from which to retrieve the distributions.

	Returns:
	A list of the parsed distributions.

	Return type:
	list

	
pycbc.distributions.read_params_from_config(cp, prior_section='prior', vargs_section='variable_args', sargs_section='static_args')[source]¶
	Loads static and variable parameters from a configuration file.

	Parameters:
		cp (WorkflowConfigParser) – An open config parser to read from.

	prior_section (str, optional) – Check that priors exist in the given section. Default is ‘prior.’

	vargs_section (str, optional) – The section to get the parameters that will be varied/need priors
defined for them. Default is ‘variable_args’.

	sargs_section (str, optional) – The section to get the parameters that will remain fixed. Default is
‘static_args’.

	Returns:
	
	variable_args (list) – The names of the parameters to vary in the PE run.

	static_args (dict) – Dictionary of names -> values giving the parameters to keep fixed.

 Previous
 Next

 © Copyright 2015, 2016, 2017, Alexander Nitz, Ian Harry, Christopher M. Biwer, Duncan A. Brown, Josh Willis, and Tito Dal Canton.
 Last updated on Mar 08, 2024.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

