# Copyright (C) 2016 Collin Capano, Christopher M. Biwer, Alex Nitz,
# 2021 Yifan Wang, Shichao Wu
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
This modules provides classes and functions for drawing and calculating the
probability density function of distributions.
"""
# imports needed for functions below
import configparser as _ConfigParser
from pycbc.distributions import constraints
from pycbc import VARARGS_DELIM as _VARARGS_DELIM
# Promote some classes/functions to the distributions name space
from pycbc.distributions.utils import draw_samples_from_config
from pycbc.distributions.angular import UniformAngle, SinAngle, CosAngle, \
UniformSolidAngle
from pycbc.distributions.arbitrary import Arbitrary, FromFile
from pycbc.distributions.gaussian import Gaussian
from pycbc.distributions.power_law import UniformPowerLaw, UniformRadius
from pycbc.distributions.sky_location import UniformSky, FisherSky
from pycbc.distributions.uniform import Uniform
from pycbc.distributions.uniform_log import UniformLog10
from pycbc.distributions.spins import IndependentChiPChiEff
from pycbc.distributions.qnm import UniformF0Tau
from pycbc.distributions.joint import JointDistribution
from pycbc.distributions.external import External, DistributionFunctionFromFile
from pycbc.distributions.fixedsamples import FixedSamples
from pycbc.distributions.mass import MchirpfromUniformMass1Mass2, \
QfromUniformMass1Mass2
# a dict of all available distributions
distribs = {
IndependentChiPChiEff.name : IndependentChiPChiEff,
Arbitrary.name : Arbitrary,
FromFile.name : FromFile,
Gaussian.name : Gaussian,
UniformPowerLaw.name : UniformPowerLaw,
UniformRadius.name : UniformRadius,
Uniform.name : Uniform,
UniformAngle.name : UniformAngle,
CosAngle.name : CosAngle,
SinAngle.name : SinAngle,
UniformSolidAngle.name : UniformSolidAngle,
UniformSky.name : UniformSky,
UniformLog10.name : UniformLog10,
UniformF0Tau.name : UniformF0Tau,
External.name: External,
DistributionFunctionFromFile.name: DistributionFunctionFromFile,
FixedSamples.name: FixedSamples,
MchirpfromUniformMass1Mass2.name: MchirpfromUniformMass1Mass2,
QfromUniformMass1Mass2.name: QfromUniformMass1Mass2,
FisherSky.name: FisherSky
}
[docs]
def read_distributions_from_config(cp, section="prior"):
"""Returns a list of PyCBC distribution instances for a section in the
given configuration file.
Parameters
----------
cp : WorflowConfigParser
An open config file to read.
section : {"prior", string}
Prefix on section names from which to retrieve the distributions.
Returns
-------
list
A list of the parsed distributions.
"""
dists = []
variable_args = []
for subsection in cp.get_subsections(section):
name = cp.get_opt_tag(section, "name", subsection)
dist = distribs[name].from_config(cp, section, subsection)
if set(dist.params).isdisjoint(variable_args):
dists.append(dist)
variable_args += dist.params
else:
raise ValueError("Same parameter in more than one distribution.")
return dists
def _convert_liststring_to_list(lstring):
"""Checks if an argument of the configuration file is a string of a list
and returns the corresponding list (of strings).
The argument is considered to be a list if it starts with '[' and ends
with ']'. List elements should be comma separated. For example, passing
`'[foo bar, cat]'` will result in `['foo bar', 'cat']` being returned. If
the argument does not start and end with '[' and ']', the argument will
just be returned as is.
"""
if lstring[0]=='[' and lstring[-1]==']':
lstring = [str(lstring[1:-1].split(',')[n].strip().strip("'"))
for n in range(len(lstring[1:-1].split(',')))]
return lstring
[docs]
def read_params_from_config(cp, prior_section='prior',
vargs_section='variable_params',
sargs_section='static_params'):
"""Loads static and variable parameters from a configuration file.
Parameters
----------
cp : WorkflowConfigParser
An open config parser to read from.
prior_section : str, optional
Check that priors exist in the given section. Default is 'prior.'
vargs_section : str, optional
The section to get the parameters that will be varied/need priors
defined for them. Default is 'variable_params'.
sargs_section : str, optional
The section to get the parameters that will remain fixed. Default is
'static_params'.
Returns
-------
variable_args : list
The names of the parameters to vary in the PE run.
static_args : dict
Dictionary of names -> values giving the parameters to keep fixed.
"""
# sanity check that each parameter in [variable_params] has a prior section
variable_args = cp.options(vargs_section)
subsections = cp.get_subsections(prior_section)
tags = set([p for tag in subsections for p in tag.split('+')])
missing_prior = set(variable_args) - tags
if any(missing_prior):
raise KeyError("You are missing a priors section in the config file "
"for parameter(s): {}".format(', '.join(missing_prior)))
# sanity check that each parameter with a priors section is in
# [variable_args]
missing_variable = tags - set(variable_args)
if any(missing_variable):
raise KeyError("Prior section found for parameter(s) {} but not "
"listed as variable parameter(s)."
.format(', '.join(missing_variable)))
# get static args
try:
static_args = dict([(key, cp.get_opt_tags(sargs_section, key, []))
for key in cp.options(sargs_section)])
except _ConfigParser.NoSectionError:
static_args = {}
# sanity check that each parameter in [variable_args]
# is not repeated in [static_args]
for arg in variable_args:
if arg in static_args:
raise KeyError("Parameter {} found both in static_args and in "
"variable_args sections.".format(arg))
# try converting values to float
for key in static_args:
val = static_args[key]
try:
# the following will raise a ValueError if it cannot be cast to
# float (as we would expect for string arguments)
static_args[key] = float(val)
except ValueError:
# try converting to a list of strings; this function will just
# return val if it does not begin (end) with [ (])
static_args[key] = _convert_liststring_to_list(val)
return variable_args, static_args
[docs]
def read_constraints_from_config(cp, transforms=None, static_args=None,
constraint_section='constraint'):
"""Loads parameter constraints from a configuration file.
Parameters
----------
cp : WorkflowConfigParser
An open config parser to read from.
transforms : list, optional
List of transforms to apply to parameters before applying constraints.
static_args : dict, optional
Dictionary of static parameters and their values to be applied
to constraints.
constraint_section : str, optional
The section to get the constraints from. Default is 'constraint'.
Returns
-------
list
List of ``Constraint`` objects. Empty if no constraints were provided.
"""
cons = []
for subsection in cp.get_subsections(constraint_section):
name = cp.get_opt_tag(constraint_section, "name", subsection)
constraint_arg = cp.get_opt_tag(
constraint_section, "constraint_arg", subsection)
# get any other keyword arguments
kwargs = {}
section = constraint_section + "-" + subsection
extra_opts = [key for key in cp.options(section)
if key not in ["name", "constraint_arg"]]
for key in extra_opts:
val = cp.get(section, key)
if key == "required_parameters":
val = val.split(_VARARGS_DELIM)
else:
try:
val = float(val)
except ValueError:
pass
kwargs[key] = val
cons.append(constraints.constraints[name](
constraint_arg, static_args=static_args, transforms=transforms,
**kwargs))
return cons