Source code for pycbc.distributions.power_law

# Copyright (C) 2016 Christopher M. Biwer
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
"""
This modules provides classes for evaluating distributions where the
probability density function is a power law.
"""
import logging
import numpy

from pycbc.distributions import bounded

logger = logging.getLogger('pycbc.distributions.power_law')

[docs] class UniformPowerLaw(bounded.BoundedDist): r""" For a uniform distribution in power law. The parameters are independent of each other. Instances of this class can be called like a function. By default, logpdf will be called, but this can be changed by setting the class's __call__ method to its pdf method. The cumulative distribution function (CDF) will be the ratio of volumes: .. math:: F(r) = \frac{V(r)}{V(R)} Where :math:`R` is the radius of the sphere. So we can write our probability density function (PDF) as: .. math:: f(r) = c r^n For generality we use :math:`n` for the dimension of the volume element, eg. :math:`n=2` for a 3-dimensional sphere. And use :math:`c` as a general constant. So now we calculate the CDF in general for this type of PDF: .. math:: F(r) = \int f(r) dr = \int c r^n dr = \frac{1}{n + 1} c r^{n + 1} + k Now with the definition of the CDF at radius :math:`r_{l}` is equal to 0 and at radius :math:`r_{h}` is equal to 1 we find that the constant from integration from this system of equations: .. math:: 1 = \frac{1}{n + 1} c ((r_{h})^{n + 1} - (r_{l})^{n + 1}) + k Can see that :math:`c = (n + 1) / ((r_{h})^{n + 1} - (r_{l})^{n + 1}))`. And :math:`k` is: .. math:: k = - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} Can see that :math:`c= \frac{n + 1}{R^{n + 1}}`. So can see that the CDF is: .. math:: F(r) = \frac{1}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} r^{n + 1} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} And the PDF is the derivative of the CDF: .. math:: f(r) = \frac{(n + 1)}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} (r)^n Now we use the probabilty integral transform method to get sampling on uniform numbers from a continuous random variable. To do this we find the inverse of the CDF evaluated for uniform numbers: .. math:: F(r) = u = \frac{1}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} r^{n + 1} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} And find :math:`F^{-1}(u)` gives: .. math:: u = \frac{1}{n + 1} \frac{(r_{h})^{n + 1} - (r_{l})^{n + 1}} - \frac{r_{l}^{n + 1}}{(r_{h})^{n + 1} - (r_{l})^{n + 1}} And solving for :math:`r` gives: .. math:: r = ( ((r_{h})^{n + 1} - (r_{l})^{n + 1}) u + (r_{l})^{n + 1})^{\frac{1}{n + 1}} Therefore the radius can be sampled by taking the n-th root of uniform numbers and multiplying by the radius offset by the lower bound radius. \**params : The keyword arguments should provide the names of parameters and their corresponding bounds, as either tuples or a `boundaries.Bounds` instance. Attributes ---------- dim : int The dimension of volume space. In the notation above `dim` is :math:`n+1`. For a 3-dimensional sphere this is 3. """ name = "uniform_power_law" def __init__(self, dim=None, **params): super(UniformPowerLaw, self).__init__(**params) self.dim = dim self._norm = 1.0 self._lognorm = 0.0 for p in self._params: self._norm *= self.dim / \ (self._bounds[p][1]**(self.dim) - self._bounds[p][0]**(self.dim)) self._lognorm = numpy.log(self._norm) @property def norm(self): """float: The normalization of the multi-dimensional pdf.""" return self._norm @property def lognorm(self): """float: The log of the normalization.""" return self._lognorm def _cdfinv_param(self, param, value): """Return inverse of cdf to map unit interval to parameter bounds. """ n = self.dim - 1 r_l = self._bounds[param][0] r_h = self._bounds[param][1] new_value = ((r_h**(n+1) - r_l**(n+1))*value + r_l**(n+1))**(1./(n+1)) return new_value def _pdf(self, **kwargs): """Returns the pdf at the given values. The keyword arguments must contain all of parameters in self's params. Unrecognized arguments are ignored. """ for p in self._params: if p not in kwargs.keys(): raise ValueError( 'Missing parameter {} to construct pdf.'.format(p)) if kwargs in self: pdf = self._norm * \ numpy.prod([(kwargs[p])**(self.dim - 1) for p in self._params]) return float(pdf) else: return 0.0 def _logpdf(self, **kwargs): """Returns the log of the pdf at the given values. The keyword arguments must contain all of parameters in self's params. Unrecognized arguments are ignored. """ for p in self._params: if p not in kwargs.keys(): raise ValueError( 'Missing parameter {} to construct pdf.'.format(p)) if kwargs in self: log_pdf = self._lognorm + \ (self.dim - 1) * \ numpy.log([kwargs[p] for p in self._params]).sum() return log_pdf else: return -numpy.inf
[docs] @classmethod def from_config(cls, cp, section, variable_args): """Returns a distribution based on a configuration file. The parameters for the distribution are retrieved from the section titled "[`section`-`variable_args`]" in the config file. Parameters ---------- cp : pycbc.workflow.WorkflowConfigParser A parsed configuration file that contains the distribution options. section : str Name of the section in the configuration file. variable_args : str The names of the parameters for this distribution, separated by `prior.VARARGS_DELIM`. These must appear in the "tag" part of the section header. Returns ------- Uniform A distribution instance from the pycbc.inference.prior module. """ return super(UniformPowerLaw, cls).from_config(cp, section, variable_args, bounds_required=True)
[docs] class UniformRadius(UniformPowerLaw): """ For a uniform distribution in volume using spherical coordinates, this is the distriubtion to use for the radius. For more details see UniformPowerLaw. """ name = "uniform_radius" def __init__(self, dim=3, **params): super(UniformRadius, self).__init__(dim=3, **params)
__all__ = ["UniformPowerLaw", "UniformRadius"]