pycbc.events package
Submodules
pycbc.events.coherent module
This module contains functions for calculating and manipulating coherent triggers.
- pycbc.events.coherent.coherent_snr(snr_triggers, index, threshold, projection_matrix, coinc_snr=None)[source]
Calculate the coherent SNR for a given set of triggers. See Eq. 2.26 of Harry & Fairhurst (2011) [arXiv:1012.4939].
- Parameters:
snr_triggers (dict) – Dictionary of the normalised complex snr time series for each ifo
index (numpy.ndarray) – Array of the indexes corresponding to triggers
threshold (float) – Coherent SNR threshold. Triggers below this are cut
projection_matrix (numpy.ndarray) – Matrix that projects the signal onto the network
coinc_snr (Optional- The coincident snr for each trigger.)
- Returns:
rho_coh (numpy.ndarray) – Array of coherent SNR for the detector network
index (numpy.ndarray) – Indexes that survive cuts
snrv (dict) – Dictionary of individual deector triggers that survive cuts
coinc_snr (list or None (default: None)) – The coincident SNR values for triggers surviving the coherent cut
- pycbc.events.coherent.coincident_snr(snr_dict, index, threshold, time_delay_idx)[source]
Calculate the coincident SNR for all coincident triggers above threshold
- Parameters:
snr_dict (dict) – Dictionary of individual detector SNRs
index (list) – List of indexes (geocentric) for which to calculate coincident SNR
threshold (float) – Coincident SNR threshold. Triggers below this are cut
time_delay_idx (dict) – Dictionary of time delay from geocenter in indexes for each detector
- Returns:
rho_coinc (numpy.ndarray) – Coincident SNR values for surviving triggers
index (list) – The subset of input indexes corresponding to triggers that survive the cuts
coinc_triggers (dict) – Dictionary of individual detector SNRs for triggers that survive cuts
- pycbc.events.coherent.get_coinc_indexes(idx_dict, time_delay_idx)[source]
Return the indexes corresponding to coincident triggers, requiring they are seen in at least two detectors in the network
- Parameters:
- Returns:
coinc_idx – List of indexes for triggers in geocent time that appear in multiple detectors
- Return type:
- pycbc.events.coherent.get_coinc_triggers(snrs, idx, t_delay_idx)[source]
Returns the coincident triggers from the longer SNR timeseries
- Parameters:
- Returns:
coincs – Dictionary of coincident trigger SNRs in each detector
- Return type:
- pycbc.events.coherent.get_projection_matrix(f_plus, f_cross, sigma, projection='standard')[source]
Calculate the matrix that projects the signal onto the network. Definitions can be found in Fairhurst (2018) [arXiv:1712.04724]. For the standard projection see Eq. 8, and for left/right circular projections see Eq. 21, with further discussion in Appendix A. See also Williamson et al. (2014) [arXiv:1410.6042] for discussion in context of the GRB search with restricted binary inclination angles.
- Parameters:
f_plus (dict) – Dictionary containing the plus antenna response factors for each IFO
f_cross (dict) – Dictionary containing the cross antenna response factors for each IFO
sigma (dict) – Dictionary of the sensitivity weights for each IFO
projection (optional, {string, 'standard'}) – The signal polarization to project. Choice of ‘standard’ (unrestricted; default), ‘right’ or ‘left’ (circular polarizations)
- Returns:
projection_matrix – The matrix that projects the signal onto the detector network
- Return type:
np.ndarray
- pycbc.events.coherent.network_chisq(chisq, chisq_dof, snr_dict)[source]
Calculate the network chi-squared statistic. This is the sum of SNR-weighted individual detector chi-squared values. See Eq. 5.4 of Dorrington (2019) [http://orca.cardiff.ac.uk/id/eprint/128124].
- Parameters:
- Returns:
net_chisq – Network chi-squared values
- Return type:
- pycbc.events.coherent.null_snr(rho_coh, rho_coinc, apply_cut=True, null_min=5.25, null_grad=0.2, null_step=20.0, index=None, snrv=None)[source]
Calculate the null SNR and optionally apply threshold cut where null SNR > null_min where coherent SNR < null_step and null SNR > (null_grad * rho_coh + null_min) elsewhere. See Eq. 3.1 of Harry & Fairhurst (2011) [arXiv:1012.4939] or Eqs. 11 and 12 of Williamson et al. (2014) [arXiv:1410.6042]..
- Parameters:
rho_coh (numpy.ndarray) – Array of coherent snr triggers
rho_coinc (numpy.ndarray) – Array of coincident snr triggers
apply_cut (bool) – Apply a cut and downweight on null SNR determined by null_min, null_grad, null_step (default True)
null_min (scalar) – Any trigger with null SNR below this is retained
null_grad (scalar) – Gradient of null SNR cut where coherent SNR > null_step
null_step (scalar) – The threshold in coherent SNR rho_coh above which the null SNR threshold increases as null_grad * rho_coh
index (dict or None (optional; default None)) – Indexes of triggers. If given, will remove triggers that fail cuts
snrv (dict of None (optional; default None)) – Individual detector SNRs. If given will remove triggers that fail cut
- Returns:
null (numpy.ndarray) – Null SNR for surviving triggers
rho_coh (numpy.ndarray) – Coherent SNR for surviving triggers
rho_coinc (numpy.ndarray) – Coincident SNR for suviving triggers
index (dict) – Indexes for surviving triggers
snrv (dict) – Single detector SNRs for surviving triggers
- pycbc.events.coherent.reweight_snr_by_null(network_snr, null, coherent, null_min=5.25, null_grad=0.2, null_step=20.0)[source]
Re-weight the detection statistic as a function of the null SNR. See Eq. 16 of Williamson et al. (2014) [arXiv:1410.6042].
- Parameters:
network_snr (numpy.ndarray) – Array containing SNR statistic to be re-weighted
null (numpy.ndarray) – Null SNR array
coherent – Coherent SNR array
- Returns:
rw_snr – Re-weighted SNR for each trigger
- Return type:
numpy.ndarray
- pycbc.events.coherent.reweightedsnr_cut(rw_snr, rw_snr_threshold)[source]
Performs a cut on reweighted snr based on a given threshold
- Parameters:
rw_snr (array of reweighted snr)
rw_snr_threshhold (any reweighted snr below this threshold is set to 0)
- Returns:
rw_snr
- Return type:
array of reweighted snr with cut values as 0
pycbc.events.coinc module
This module contains functions for calculating and manipulating coincident triggers.
- class pycbc.events.coinc.CoincExpireBuffer(expiration, ifos, initial_size=1048576, dtype=<class 'numpy.float32'>)[source]
Bases:
object
Unordered dynamic sized buffer that handles multiple expiration vectors.
- property data
Return the array of elements
- property nbytes
Returns the approximate memory usage of self.
- class pycbc.events.coinc.LiveCoincTimeslideBackgroundEstimator(num_templates, analysis_block, background_statistic, sngl_ranking, stat_files, ifos, ifar_limit=100, timeslide_interval=0.035, coinc_window_pad=0.002, statistic_refresh_rate=None, return_background=False, **kwargs)[source]
Bases:
object
Rolling buffer background estimation.
- property background_time
Return the amount of background time that the buffers contain
- ifar(coinc_stat)[source]
Map a given value of the coincident ranking statistic to an inverse false-alarm rate (IFAR) using the interally stored background sample.
- Parameters:
coinc_stat (float) – Value of the coincident ranking statistic to be converted.
- Returns:
ifar (float) – Inverse false-alarm rate in unit of years.
ifar_saturated (bool) – True if coinc_stat is larger than all the available background, in which case ifar is to be considered an upper limit.
- classmethod pick_best_coinc(coinc_results)[source]
Choose the best two-ifo coinc by ifar first, then statistic if needed.
This function picks which of the available double-ifo coincs to use. It chooses the best (highest) ifar. The ranking statistic is used as a tie-breaker. A trials factor is applied if multiple types of coincs are possible at this time given the active ifos.
- Parameters:
coinc_results (list of coinc result dicts) – Dictionary by detector pair of coinc result dicts.
- Returns:
best – If there is a coinc, this will contain the ‘best’ one. Otherwise it will return the provided dict.
- Return type:
coinc results dict
- class pycbc.events.coinc.MultiRingBuffer(num_rings, max_time, dtype, min_buffer_size=16, buffer_increment=8, resize_invalid_fraction=0.4)[source]
Bases:
object
Dynamic size n-dimensional ring buffer that can expire elements.
- advance_time()[source]
Advance the internal time increment by 1, expiring any triggers that are now too old.
- check_expired_triggers(buffer_index)[source]
Check if we should free memory for this buffer index.
Check what fraction of triggers are expired in the specified buffer and if it is more than the allowed fraction (set by self.resize_invalid_fraction) resize the array to remove them.
- property filled_time
- property nbytes
- pycbc.events.coinc.background_bin_from_string(background_bins, data)[source]
Return template ids for each bin as defined by the format string
- Parameters:
- Returns:
bins – Dictionary of location indices indexed by a bin name
- Return type:
- pycbc.events.coinc.cluster_coincs(stat, time1, time2, timeslide_id, slide, window, **kwargs)[source]
Cluster coincident events for each timeslide separately, across templates, based on the ranking statistic
- Parameters:
stat (numpy.ndarray) – vector of ranking values to maximize
time1 (numpy.ndarray) – first time vector
time2 (numpy.ndarray) – second time vector
timeslide_id (numpy.ndarray) – vector that determines the timeslide offset
slide (float) – length of the timeslides offset interval
window (float) – length to cluster over
- Returns:
cindex – The set of indices corresponding to the surviving coincidences.
- Return type:
numpy.ndarray
- pycbc.events.coinc.cluster_coincs_multiifo(stat, time_coincs, timeslide_id, slide, window, **kwargs)[source]
Cluster coincident events for each timeslide separately, across templates, based on the ranking statistic
- Parameters:
stat (numpy.ndarray) – vector of ranking values to maximize
time_coincs (tuple of numpy.ndarrays) – trigger times for each ifo, or -1 if an ifo does not participate in a coinc
timeslide_id (numpy.ndarray) – vector that determines the timeslide offset
slide (float) – length of the timeslides offset interval
window (float) – duration of clustering window in seconds
- Returns:
cindex – The set of indices corresponding to the surviving coincidences
- Return type:
numpy.ndarray
- pycbc.events.coinc.cluster_over_time(stat, time, window, method='python', argmax=<function argmax>)[source]
Cluster generalized transient events over time via maximum stat over a symmetric sliding window
- Parameters:
stat (numpy.ndarray) – vector of ranking values to maximize
time (numpy.ndarray) – time to use for clustering
window (float) – length to cluster over
method (string) – Either “cython” to use the cython implementation, or “python” to use the pure python version.
argmax (function) – the function used to calculate the maximum value
- Returns:
cindex – The set of indices corresponding to the surviving coincidences.
- Return type:
numpy.ndarray
- pycbc.events.coinc.mean_if_greater_than_zero(vals)[source]
Calculate mean over numerical values, ignoring values less than zero. E.g. used for mean time over coincident triggers when timestamps are set to -1 for ifos not included in the coincidence.
- Parameters:
vals (iterator of numerical values) – values to be mean averaged
- Returns:
mean (float) – The mean of the values in the original vector which are greater than zero
num_above_zero (int) – The number of entries in the vector which are above zero
- pycbc.events.coinc.time_coincidence(t1, t2, window, slide_step=0)[source]
Find coincidences by time window
- Parameters:
t1 (numpy.ndarray) – Array of trigger times from the first detector
t2 (numpy.ndarray) – Array of trigger times from the second detector
window (float) – Coincidence window maximum time difference, arbitrary units (usually s)
slide_step (float (default 0)) – If calculating background coincidences, the interval between background slides, arbitrary units (usually s)
- Returns:
idx1 (numpy.ndarray) – Array of indices into the t1 array for coincident triggers
idx2 (numpy.ndarray) – Array of indices into the t2 array
slide (numpy.ndarray) – Array of slide ids
- pycbc.events.coinc.time_multi_coincidence(times, slide_step=0, slop=0.003, pivot='H1', fixed='L1')[source]
Find multi detector coincidences.
- Parameters:
times (dict of numpy.ndarrays) – Dictionary keyed by ifo of single ifo trigger times
slide_step (float) – Interval between time slides
slop (float) – The amount of time to add to the TOF between detectors for coincidence
pivot (str) – The ifo to which time shifts are applied in first stage coincidence
fixed (str) – The other ifo used in first stage coincidence, subsequently used as a time reference for additional ifos. All other ifos are not time shifted relative to this ifo
- Returns:
ids (dict of arrays of int) – Dictionary keyed by ifo with ids of trigger times forming coincidences. Coincidence is tested for every pair of ifos that can be formed from the input dict: only those tuples of times passing all tests are recorded
slide (array of int) – Slide ids of coincident triggers in pivot ifo
- pycbc.events.coinc.timeslide_durations(start1, start2, end1, end2, timeslide_offsets)[source]
Find the coincident time for each timeslide.
Find the coincident time for each timeslide, where the first time vector is slid to the right by the offset in the given timeslide_offsets vector.
- Parameters:
start1 (numpy.ndarray) – Array of the start of valid analyzed times for detector 1
start2 (numpy.ndarray) – Array of the start of valid analyzed times for detector 2
end1 (numpy.ndarray) – Array of the end of valid analyzed times for detector 1
end2 (numpy.ndarray) – Array of the end of valid analyzed times for detector 2
timseslide_offset (numpy.ndarray) – Array of offsets (in seconds) for each timeslide
- Returns:
durations – Array of coincident time for each timeslide in the offset array
- Return type:
numpy.ndarray
pycbc.events.coinc_rate module
This module contains functions for calculating expected rates of noise and signal coincidences.
- pycbc.events.coinc_rate.combination_noise_lograte(log_rates, slop, dets=None)[source]
Calculate the expected rate of noise coincidences for a combination of detectors given log of single detector noise rates
- Parameters:
log_rates (dict) – Key: ifo string, Value: sequence of log single-detector trigger rates, units assumed to be Hz
slop (float) – time added to maximum time-of-flight between detectors to account for timing error
dets (dict) – Key: ifo string, Value: pycbc.detector.Detector object If not provided, will be created from ifo strings
- Returns:
Expected log coincidence rate in the combination, units Hz
- Return type:
numpy array
- pycbc.events.coinc_rate.combination_noise_rate(rates, slop)[source]
Calculate the expected rate of noise coincidences for a combination of detectors WARNING: for high stat values, numerical underflow can occur
- Parameters:
- Returns:
Expected coincidence rate in the combination, units Hz
- Return type:
numpy array
- pycbc.events.coinc_rate.multiifo_noise_coincident_area(ifos, slop, dets=None)[source]
Calculate the total extent of time offset between 2 detectors, or area of the 2d space of time offsets for 3 detectors, for which a coincidence can be generated Cannot yet handle more than 3 detectors.
- Parameters:
- Returns:
allowed_area – area in units of seconds^(n_ifos-1) that coincident values can fall in
- Return type:
- pycbc.events.coinc_rate.multiifo_noise_lograte(log_rates, slop)[source]
Calculate the expected rate of noise coincidences for multiple combinations of detectors
- Parameters:
- Returns:
expected_log_rates – Key: ifo combination string Value: expected log coincidence rate in the combination, units log Hz
- Return type:
pycbc.events.cuts module
This module contains functions for reading in command line options and applying cuts to triggers or templates in the offline search
- pycbc.events.cuts.apply_template_cuts(bank, template_cut_dict, template_ids=None, statistic=None, ifos=None)[source]
Fetch/calculate the parameter for the templates, possibly already preselected by template_ids, and then apply the cuts defined in template_cut_dict As this is used to select templates for use in findtrigs codes, we remove anything which does not pass
- Parameters:
bank (h5py File object, or a dictionary) – Must contain the usual template bank datasets
template_cut_dict (dictionary) – Dictionary with tuples of (parameter, cut_function) as keys, cut_thresholds as values made using ingest_cuts_option_group function
Parameters (Optional)
-------------------
template_ids (list of indices) – Indices of templates to consider within the bank, useful if templates have already been down-selected
statistic – A PyCBC ranking statistic instance. Used for the template fit cuts. If fits_by_tid does not exist for each ifo, then template fit cuts will be skipped. If a fit cut has been specified and fits_by_tid does not exist for all ifos, an error will be raised. If not supplied, no template fit cuts will be attempted.
ifos (list of strings) – List of IFOS used in this findtrigs instance. Templates must pass cuts in all IFOs. This is important e.g. for template fit parameter cuts.
- Returns:
tids_out – Array of template_ids which have passed all cuts
- Return type:
numpy array
- pycbc.events.cuts.apply_template_fit_cut(statistic, ifos, parameter_cut_function, cut_thresh, template_ids)[source]
Apply cuts to template fit parameters, these have a few more checks needed, so we separate out from apply_template_cuts defined later
- Parameters:
statistic – A PyCBC ranking statistic instance. Used for the template fit cuts. If fits_by_tid does not exist for each ifo, then template fit cuts will be skipped. If a fit cut has been specified and fits_by_tid does not exist for all ifos, an error will be raised.
ifos (list of strings) – List of IFOS used in this findtrigs instance. Templates must pass cuts in all IFOs.
parameter_cut_function (tuple) – First entry: Which parameter is being used for the cut? Second entry: Cut function
cut_thresh (float or int) – Cut threshold to the parameter according to the cut function
template_ids (numpy array) – Array of template_ids which have passed previous cuts
- Returns:
tids_out – Array of template_ids which have passed this cut
- Return type:
numpy array
- pycbc.events.cuts.apply_trigger_cuts(triggers, trigger_cut_dict, statistic=None)[source]
Fetch/Calculate the parameter for triggers, and then apply the cuts defined in template_cut_dict
- Parameters:
triggers (ReadByTemplate object or dictionary) – The triggers in this particular template. This must have the correct datasets required to calculate the values we cut on.
trigger_cut_dict (dictionary) – Dictionary with tuples of (parameter, cut_function) as keys, cut_thresholds as values made using ingest_cuts_option_group function
- Returns:
idx_out – An array of the indices which meet the criteria set by the dictionary
- Return type:
numpy array
- pycbc.events.cuts.check_update_cuts(cut_dict, new_cut)[source]
Update a cuts dictionary, but check whether the cut exists already, warn and only apply the strictest cuts
- Parameters:
cut_dict (dictionary) – Dictionary containing the cuts to be checked, will be updated
new_cut (single-entry dictionary) – dictionary to define the new cut which is being considered to add
- pycbc.events.cuts.convert_inputstr(inputstr, choices)[source]
Convert the inputstr into a dictionary keyed on parameter with a tuple of the function to be used in the cut, and the float to compare to. Do input checks
- pycbc.events.cuts.ingest_cuts_option_group(args)[source]
Return dictionaries for trigger and template cuts.
- pycbc.events.cuts.insert_cuts_option_group(parser)[source]
Add options to the parser for cuts to the templates/triggers
- pycbc.events.cuts.sigma_multiple_cut_thresh(template_ids, statistic, cut_thresh, ifo)[source]
Apply cuts based on a multiple of the median sigma value for the template
- Parameters:
template_ids – template_id values for each of the triggers to be considered, this will be used to associate a sigma threshold for each trigger
statistic – A PyCBC ranking statistic instance. Used to get the median_sigma value for the cuts. If fits_by_tid does not exist for the specified ifo (where median_sigma lives), an error will be raised.
ifo – The IFO for which we want to read median_sigma
cut_thresh (int or float) – The multiple of median_sigma to compare triggers to
- Returns:
idx_out – An array of the indices of triggers which meet the criteria set by the dictionary
- Return type:
numpy array
pycbc.events.eventmgr module
This modules defines functions for clustering and thresholding timeseries to produces event triggers
- class pycbc.events.eventmgr.EventManager(opt, column, column_types, **kwds)[source]
Bases:
object
- cluster_template_events(tcolumn, column, window_size)[source]
Cluster the internal events over the named column
- classmethod from_multi_ifo_interface(opt, ifo, column, column_types, **kwds)[source]
To use this for a single ifo from the multi ifo interface requires some small fixing of the opt structure. This does that. As we edit the opt structure the process_params table will not be correct.
- save_performance(ncores, nfilters, ntemplates, run_time, setup_time)[source]
Calls variables from pycbc_inspiral to be used in a timing calculation
- class pycbc.events.eventmgr.EventManagerCoherent(opt, ifos, column, column_types, network_column, network_column_types, segments, time_slides, psd=None, **kwargs)[source]
Bases:
EventManagerMultiDetBase
- cluster_template_network_events(tcolumn, column, window_size, slide=0)[source]
Cluster the internal events over the named column :param tcolumn: Indicates which column contains the time. :param column: The named column to cluster. :param window_size: The size of the window. :param slide: Default is 0.
- class pycbc.events.eventmgr.EventManagerMultiDet(opt, ifos, column, column_types, psd=None, **kwargs)[source]
Bases:
EventManagerMultiDetBase
- class pycbc.events.eventmgr.ThresholdCluster(*args, **kwargs)[source]
Bases:
object
Create a threshold and cluster engine
- Parameters:
series (complex64) – Input pycbc.types.Array (or subclass); it will be searched for points above threshold that are then clustered
- pycbc.events.eventmgr.cluster_reduce(idx, snr, window_size)[source]
Reduce the events by clustering over a window
- pycbc.events.eventmgr.findchirp_cluster_over_window(times, values, window_length)[source]
Reduce the events by clustering over a window using the FindChirp clustering algorithm
- pycbc.events.eventmgr.threshold(series, value)[source]
Return list of values and indices values over threshold in series.
- pycbc.events.eventmgr.threshold_and_cluster(series, threshold, window)[source]
Return list of values and indices values over threshold in series.
pycbc.events.eventmgr_cython module
- pycbc.events.eventmgr_cython.coincbuffer_expireelements(cbuffer, timer1, timer2, time1, time2, expiration, length)
- pycbc.events.eventmgr_cython.coincbuffer_numgreater(cbuffer, length, value)
- pycbc.events.eventmgr_cython.findchirp_cluster_over_window_cython(times, absvalues, window_length, indices, tlen)
- pycbc.events.eventmgr_cython.logsignalrateinternals_compute2detrate(nbinned0, nbinned1, nbinned2, c0_size, c1_size, c2_size, rate, rtype, sref, two_det_weights, max_penalty, ref_snr, length)
- pycbc.events.eventmgr_cython.logsignalrateinternals_computepsignalbins(pdif, tdif, sdif, pbin, tbin, sbin, p, t, s, sig, pref, tref, sref, sigref, shift, rtype, sense, senseref, twidth, pwidth, swidth, to_shift_ref, to_shift_ifo, length)
- pycbc.events.eventmgr_cython.timecluster_cython(indices, left, right, stat, leftlen)
- pycbc.events.eventmgr_cython.timecoincidence_constructfold(fold1, fold2, t1, t2, slide_step, length1, length2)
- pycbc.events.eventmgr_cython.timecoincidence_constructidxs(idx1, idx2, sort1, sort2, left, right, leftlength, sort2length)
- pycbc.events.eventmgr_cython.timecoincidence_findidxlen(left, right, leftlength)
- pycbc.events.eventmgr_cython.timecoincidence_getslideint(slide, t1, t2, idx1, idx2, slide_step)
pycbc.events.ranking module
This module contains functions for calculating single-ifo ranking statistic values
- pycbc.events.ranking.effsnr(snr, reduced_x2, fac=250.0)[source]
Calculate the effective SNR statistic. See (S5y1 paper) for definition.
- pycbc.events.ranking.get_newsnr(trigs)[source]
Calculate newsnr (‘reweighted SNR’) for a trigs/dictionary object
- Parameters:
trigs (dict of numpy.ndarrays, h5py group (or similar dict-like object)) – Dictionary-like object holding single detector trigger information. ‘chisq_dof’, ‘snr’, and ‘chisq’ are required keys
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_newsnr_sgveto(trigs)[source]
Calculate newsnr re-weigthed by the sine-gaussian veto
- Parameters:
trigs (dict of numpy.ndarrays, h5py group (or similar dict-like object)) – Dictionary-like object holding single detector trigger information. ‘chisq_dof’, ‘snr’, ‘sg_chisq’ and ‘chisq’ are required keys
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_newsnr_sgveto_psdvar(trigs)[source]
Calculate snr re-weighted by Allen chisq, sine-gaussian veto and psd variation statistic
- Parameters:
trigs (dict of numpy.ndarrays) – Dictionary holding single detector trigger information.
'chisq_dof'
'snr'
keys ('chisq' and 'psd_var_val' are required)
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_newsnr_sgveto_psdvar_scaled(trigs)[source]
Calculate newsnr re-weighted by the sine-gaussian veto and scaled psd variation statistic
- Parameters:
trigs (dict of numpy.ndarrays) – Dictionary holding single detector trigger information.
'chisq_dof'
'snr'
keys ('chisq' and 'psd_var_val' are required)
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_newsnr_sgveto_psdvar_scaled_threshold(trigs)[source]
Calculate newsnr re-weighted by the sine-gaussian veto and scaled psd variation statistic. A further threshold is applied to the reduced chisq.
- Parameters:
trigs (dict of numpy.ndarrays) – Dictionary holding single detector trigger information.
'chisq_dof'
'snr'
keys ('chisq' and 'psd_var_val' are required)
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_newsnr_sgveto_psdvar_threshold(trigs)[source]
Calculate newsnr re-weighted by the sine-gaussian veto and scaled psd variation statistic
- Parameters:
trigs (dict of numpy.ndarrays) – Dictionary holding single detector trigger information.
'chisq_dof'
'snr'
keys ('chisq' and 'psd_var_val' are required)
- Returns:
Array of newsnr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.get_sngls_ranking_from_trigs(trigs, statname, **kwargs)[source]
Return ranking for all trigs given a statname.
Compute the single-detector ranking for a list of input triggers for a specific statname.
- Parameters:
trigs (dict of numpy.ndarrays, SingleDetTriggers or ReadByTemplate) – Dictionary holding single detector trigger information.
statname – The statistic to use.
- pycbc.events.ranking.get_snr(trigs)[source]
Return SNR from a trigs/dictionary object
- Parameters:
trigs (dict of numpy.ndarrays, h5py group (or similar dict-like object)) – Dictionary-like object holding single detector trigger information. ‘snr’ is a required key
- Returns:
Array of snr values
- Return type:
numpy.ndarray
- pycbc.events.ranking.newsnr(snr, reduced_x2, q=6.0, n=2.0)[source]
Calculate the re-weighted SNR statistic (‘newSNR’) from given SNR and reduced chi-squared values. See http://arxiv.org/abs/1208.3491 for definition. Previous implementation in glue/ligolw/lsctables.py
- pycbc.events.ranking.newsnr_sgveto(snr, brchisq, sgchisq)[source]
Combined SNR derived from NewSNR and Sine-Gaussian Chisq
- pycbc.events.ranking.newsnr_sgveto_psdvar(snr, brchisq, sgchisq, psd_var_val, min_expected_psdvar=0.65)[source]
Combined SNR derived from SNR, reduced Allen chisq, sine-Gaussian chisq and PSD variation statistic
- pycbc.events.ranking.newsnr_sgveto_psdvar_scaled(snr, brchisq, sgchisq, psd_var_val, scaling=0.33, min_expected_psdvar=0.65)[source]
Combined SNR derived from NewSNR, Sine-Gaussian Chisq and scaled PSD variation statistic.
- pycbc.events.ranking.newsnr_sgveto_psdvar_scaled_threshold(snr, bchisq, sgchisq, psd_var_val, threshold=2.0)[source]
Combined SNR derived from NewSNR and Sine-Gaussian Chisq, and scaled psd variation.
- pycbc.events.ranking.newsnr_sgveto_psdvar_threshold(snr, brchisq, sgchisq, psd_var_val, min_expected_psdvar=0.65, brchisq_threshold=10.0, psd_var_val_threshold=10.0)[source]
newsnr_sgveto_psdvar with thresholds applied.
This is the newsnr_sgveto_psdvar statistic with additional options to threshold on chi-squared or PSD variation.
pycbc.events.significance module
This module contains functions to calculate the significance through different estimation methods of the background, and functions that read in the associated options to do so.
- pycbc.events.significance.apply_far_limit(far, significance_dict, combo=None)[source]
Apply a FAR limit to events according to command line options.
If far_limit in significance_dict is zero, no limit is applied.
- Parameters:
far (numpy array)
significance_dict (dictionary) – Dictionary containing any limit on FAR (Hz), made by digest_significance_options
active_combination (numpy.array or string) – Array of IFO combinations given as utf-8 encoded strings, or a string which defines the IFO combination for all events
- Returns:
far_out – FARs with far limit applied as appropriate
- Return type:
numpy array
- pycbc.events.significance.check_significance_options(args, parser)[source]
Check the significance group options
- pycbc.events.significance.count_n_louder(bstat, fstat, dec, **kwargs)[source]
Calculate for each foreground event the number of background events that are louder than it.
- Parameters:
bstat (numpy.ndarray) – Array of the background statistic values
fstat (numpy.ndarray or scalar) – Array of the foreground statistic values or single value
dec (numpy.ndarray) – Array of the decimation factors for the background statistics
- Returns:
cum_back_num (numpy.ndarray) – The cumulative array of background triggers.
fore_n_louder (numpy.ndarray) – The number of background triggers above each foreground trigger
{} ((empty) dictionary) – Ensure we return the same tuple of objects as n_louder_from_fit()
- pycbc.events.significance.digest_significance_options(combo_keys, args)[source]
Read in information from the significance option group and ensure it makes sense before putting into a dictionary
- Parameters:
combo_keys (list of strings) – list of detector combinations for which options are needed
args (parsed arguments) – from argparse ArgumentParser parse_args()
- Returns:
significance_dict – Dictionary containing method, threshold and function for trigger fits as appropriate, and any limit on FAR (Hz)
- Return type:
dictionary
- pycbc.events.significance.get_far(back_stat, fore_stat, dec_facs, background_time, method='n_louder', **kwargs)[source]
Return the appropriate FAR given the significance calculation method
If the n_louder method is used, find the IFAR according to Eq.17-18 of Usman et al., arXiv:1508.02357. The p-value of a candidate in a search of duration T, with n_bg louder time shifted events over a total background time T_bg is p = 1 - exp(-T * (n_bg + 1) / T_bg) corresponding to an effective false alarm rate of (n_bg + 1) / T_bg.
If the trigger_fit method is used, we are extrapolating the background for the specific aim of FAR not being limited to 1 / T_bg, and so we do not add 1 to n_bg
- Parameters:
parameters (See description in get_n_louder for most)
background_time (float) – The amount of time to convert the number of louder events into a FAR
- pycbc.events.significance.get_n_louder(back_stat, fore_stat, dec_facs, method='n_louder', **kwargs)[source]
Wrapper to find the correct n_louder calculation method using standard inputs
- pycbc.events.significance.ifar_opt_to_far_limit(ifar_str)[source]
Convert the string of an IFAR limit in years into a float FAR limit in Hz.
- Parameters:
ifar_str (string) – Upper limit on IFAR in years. Zero indicates no upper limit
- pycbc.events.significance.insert_significance_option_group(parser)[source]
Add some options for use when a significance is being estimated from events or event distributions.
- pycbc.events.significance.n_louder_from_fit(back_stat, fore_stat, dec_facs, fit_function='exponential', fit_threshold=0, **kwargs)[source]
Use a fit to events in back_stat in order to estimate the distribution for use in recovering the estimate count of louder background events. Below the fit threshold, use the n_louder method for these triggers
- back_stat: numpy.ndarray
Array of the background statistic values
- fore_stat: numpy.ndarray or scalar
Array of the foreground statistic values or single value
- dec_facs: numpy.ndarray
Array of the decimation factors for the background statistics
- fit_function: str
Name of the function to be used for the fit to background statistic values
- fit_threshold: float
Threshold above which triggers use the fitted value, below this the counted number of louder events will be used
- Returns:
bg_n_louder (numpy.ndarray) – The estimated number of background events louder than each background event
fg_n_louder (numpy.ndarray) – The estimated number of background events louder than each foreground event
sig_info (a dictionary) – Information regarding the significance fit
pycbc.events.simd_threshold_cython module
- pycbc.events.simd_threshold_cython.parallel_thresh_cluster(series, slen, values, locs, thresh, window, segsize)
- pycbc.events.simd_threshold_cython.parallel_threshold(N, arr, outv, outl, count, threshold)
pycbc.events.single module
utilities for assigning FAR to single detector triggers
- class pycbc.events.single.LiveSingle(ifo, ranking_threshold=10.0, reduced_chisq_threshold=5, duration_threshold=0, fit_file=None, sngl_ifar_est_dist=None, fixed_ifar=None, maximum_ifar=None, statistic=None, sngl_ranking=None, stat_files=None, statistic_refresh_rate=None, **kwargs)[source]
Bases:
object
pycbc.events.stat module
This module contains functions for calculating coincident ranking statistic values.
- class pycbc.events.stat.DQExpFitFgBgKDEStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
DQExpFitFgBgNormStatistic
The ExpFitFgBgKDEStatistic with DQ-based reranking.
This is the same as the DQExpFitFgBgNormStatistic except the signal rate is adjusted according to the KDE statistic files
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Inherited, see docstring for ExpFitFgBgKDEStatistic.coinc_lim_for_thresh
- logsignalrate(stats, shift, to_shift)[source]
Inherited, see docstring for ExpFitFgBgKDEStatistic.logsignalrate
- class pycbc.events.stat.DQExpFitFgBgNormStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
ExpFitFgBgNormStatistic
The ExpFitFgBgNormStatistic with DQ-based reranking.
This is the same as the ExpFitFgBgNormStatistic except the likelihood ratio is corrected via estimating relative noise trigger rates based on the DQ time series.
- assign_dq_rates(key)[source]
Assign dq values to each time for every bin based on a referenced statistic file.
- assign_template_bins(key)[source]
Assign bin ID values Assign each template id to a bin name based on a referenced statistic file.
- check_low_latency(key)[source]
Check if the statistic file indicates low latency mode. :param key: Statistic file key string. :type key: str
- Return type:
None
- lognoiserate(trigs)[source]
Calculate the log noise rate density over single-ifo ranking
Read in single trigger information, compute the ranking and rescale by the fitted coefficients alpha and rate
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
lognoiserate – Array of log noise rate density for each input trigger.
- Return type:
numpy.array
- single(trigs)[source]
Calculate the necessary single detector information
In this case the ranking rescaled (see the lognoiserate method here) with the phase, end time, sigma, SNR, template_id and the benchmark_logvol values added in.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitBgRateStatistic(sngl_ranking, files=None, ifos=None, benchmark_lograte=-14.6, **kwargs)[source]
Bases:
ExpFitStatistic
Detection statistic using an exponential falloff noise model.
Statistic calculates the log noise coinc rate for each template over single-ifo newsnr values.
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- Parameters:
- Returns:
Array of coincident ranking statistic values
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitCombinedSNR(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
ExpFitStatistic
Reworking of ExpFitStatistic designed to resemble network SNR
Use a monotonic function of the negative log noise rate density which approximates combined (new)snr for coincs with similar newsnr in each ifo
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- Parameters:
- Returns:
Array of coincident ranking statistic values
- Return type:
numpy.ndarray
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for single detector candidates
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitFgBgKDEStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
ExpFitFgBgNormStatistic
The ExpFitFgBgNormStatistic with an additional mass and spin weighting factor determined by KDE statistic files.
This is the same as the ExpFitFgBgNormStatistic except the likelihood ratio is multiplied by the ratio of signal KDE to template KDE over some parameters covering the bank.
- assign_kdes(kname)[source]
Extract values from KDE files
- Parameters:
kname (str) – Used to label the kde files.
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input trigers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- kde_ratio()[source]
Calculate the weighting factor according to the ratio of the signal and template KDE lookup tables
- logsignalrate(stats, shift, to_shift)[source]
Calculate the normalized log rate density of signals via lookup.
This calls back to the parent class and then applies the ratio_kde weighting factor.
- Parameters:
- Returns:
value – triggers and time shifts
- Return type:
log of coinc signal rate density for the given single-ifo
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitFgBgNormBBHStatistic(sngl_ranking, files=None, ifos=None, max_chirp_mass=None, **kwargs)[source]
Bases:
ExpFitFgBgNormStatistic
The ExpFitFgBgNormStatistic with a mass weighting factor.
This is the same as the ExpFitFgBgNormStatistic except the likelihood is multiplied by a signal rate prior modelled as uniform over chirp mass. As templates are distributed roughly according to mchirp^(-11/3) we weight by the inverse of this. This ensures that quiet signals at high mass where template density is sparse are not swamped by events at lower masses where template density is high.
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- logsignalrate(stats, shift, to_shift)[source]
Calculate the normalized log rate density of signals via lookup
This calls back to the Parent class and then applies the chirp mass weighting factor.
- Parameters:
- Returns:
value – triggers and time shifts
- Return type:
log of coinc signal rate density for the given single-ifo
- rank_stat_coinc(sngls_list, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- Parameters:
- Returns:
Array of coincident ranking statistic values
- Return type:
numpy.ndarray
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
This calls back to the Parent class and then applies the chirp mass weighting factor.
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
In this case the ranking rescaled (see the lognoiserate method here) with the phase, end time, sigma, SNR, template_id and the benchmark_logvol values added in. This also stored the current chirp mass for use when computing the coinc statistic values.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitFgBgNormStatistic(sngl_ranking, files=None, ifos=None, reference_ifos='H1,L1', **kwargs)[source]
Bases:
PhaseTDStatistic
,ExpFitBgRateStatistic
Statistic combining PhaseTD, ExpFitBg and additional foreground info.
- assign_benchmark_logvol()[source]
Assign the benchmark log-volume used by the statistic. This is the sensitive log-volume of each template in the network of reference IFOs
- assign_median_sigma(ifo)[source]
Read and sort the median_sigma values from input files.
- Parameters:
ifo (str) – The ifo to consider.
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- lognoiserate(trigs, alphabelow=6)[source]
Calculate the log noise rate density over single-ifo ranking
Read in single trigger information, make the newsnr statistic and rescale by the fitted coefficients alpha and rate
- Parameters:
- Returns:
lognoisel – Array of log noise rate density for each input trigger.
- Return type:
numpy.array
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- Parameters:
- Returns:
Array of coincident ranking statistic values
- Return type:
numpy.ndarray
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for single detector candidates
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
In this case the ranking rescaled (see the lognoiserate method here) with the phase, end time, sigma, SNR, template_id and the benchmark_logvol values added in.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.ExpFitStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
QuadratureSumStatistic
Detection statistic using an exponential falloff noise model.
Statistic approximates the negative log noise coinc rate density per template over single-ifo newsnr values.
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
- coinc_lim_for_thresh_OLD(s0, thresh)[source]
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
s0 (numpy.ndarray) – Single detector ranking statistic for the first detector.
thresh (float) – The threshold on the coincident statistic.
- Returns:
numpy.ndarray – Array of limits on the second detector single statistic to
exceed thresh.
- find_fits(trigs)[source]
Get fit coeffs for a specific ifo and template id(s)
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information. The coincidence executable will always call this using a bunch of trigs from a single template, there template_num is stored as an attribute and we just return the single value for all templates. If multiple templates are in play we must return arrays.
- Returns:
alphai (float or numpy array) – The alpha fit value(s)
ratei (float or numpy array) – The rate fit value(s)
thresh (float or numpy array) – The thresh fit value(s)
- get_ref_vals(ifo)[source]
Get the largest alpha value over all templates for given ifo.
This is stored in self.alphamax[ifo] in the class instance.
- Parameters:
ifo (str) – The detector to get fits for.
- lognoiserate(trigs)[source]
Calculate the log noise rate density over single-ifo ranking
Read in single trigger information, compute the ranking and rescale by the fitted coefficients alpha and rate
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
lognoisel – Array of log noise rate density for each input trigger.
- Return type:
numpy.array
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
In this case the ranking rescaled (see the lognoiserate method here).
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.PhaseTDExpFitStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
PhaseTDStatistic
,ExpFitCombinedSNR
Statistic combining exponential noise model with signal histogram PDF
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- coinc_lim_for_thresh_OLD(s0, thresh)[source]
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
s0 (numpy.ndarray) – Single detector ranking statistic for the first detector.
thresh (float) – The threshold on the coincident statistic.
- Returns:
numpy.ndarray – Array of limits on the second detector single statistic to
exceed thresh.
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
In this case the ranking rescaled (see the lognoiserate method here) with the phase, end time, sigma and SNR values added in.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.PhaseTDStatistic(sngl_ranking, files=None, ifos=None, pregenerate_hist=True, **kwargs)[source]
Bases:
QuadratureSumStatistic
Statistic that re-weights combined newsnr using coinc parameters.
The weighting is based on the PDF of time delays, phase differences and amplitude ratios between triggers in different ifos.
- coinc_lim_for_thresh(sngls_list, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest. Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- get_hist(ifos=None)[source]
Read in a signal density file for the ifo combination
- Parameters:
ifos (list) – The list of ifos. Needed if not given when initializing the class instance.
- logsignalrate(stats, shift, to_shift)[source]
Calculate the normalized log rate density of signals via lookup
- Parameters:
- Returns:
value – triggers and time shifts
- Return type:
log of coinc signal rate density for the given single-ifo
- rank_stat_coinc(sngls_list, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic, defined in Eq 2 of [Nitz et al, 2017](https://doi.org/10.3847/1538-4357/aa8f50).
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
For this statistic this is just passing through the single value, which will be the second entry in the tuple.
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
Here the ranking as well as phase, endtime and sigma-squared values.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information. ‘snr’, ‘chisq’, ‘chisq_dof’, ‘coa_phase’, ‘end_time’, and ‘sigmasq’ are required keys.
- Returns:
Array of single detector parameter values
- Return type:
numpy.ndarray
- class pycbc.events.stat.QuadratureSumStatistic(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
Stat
Calculate the quadrature sum coincident detection statistic
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- Parameters:
- Returns:
Array of limits on the limifo single statistic to exceed thresh.
- Return type:
numpy.ndarray
- rank_stat_coinc(sngls_list, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- Parameters:
- Returns:
Array of coincident ranking statistic values
- Return type:
numpy.ndarray
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
For this statistic this is just passing through the single value, which will be the second entry in the tuple.
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- single(trigs)[source]
Calculate the necessary single detector information
Here just the ranking is computed and returned.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- class pycbc.events.stat.Stat(sngl_ranking, files=None, ifos=None, **kwargs)[source]
Bases:
object
Base class which should be extended to provide a coincident statistic
- check_update_files()[source]
Check whether files associated with the statistic need updated, then do so for each file which needs changing
- coinc_lim_for_thresh(s, thresh, limifo, **kwargs)[source]
Optimization function to identify coincs too quiet to be of interest
Calculate the required single detector statistic to exceed the threshold for each of the input triggers.
- get_sngl_ranking(trigs)[source]
Returns the ranking for the single detector triggers.
- Parameters:
trigs (dict of numpy.ndarrays, h5py group or similar dict-like object) – Object holding single detector trigger information.
- Returns:
The array of single detector values
- Return type:
numpy.ndarray
- rank_stat_coinc(s, slide, step, to_shift, **kwargs)[source]
Calculate the coincident detection statistic.
- rank_stat_single(single_info, **kwargs)[source]
Calculate the statistic for a single detector candidate
- Parameters:
single_info (tuple) – Tuple containing two values. The first is the ifo (str) and the second is the single detector triggers.
- Returns:
The array of single detector statistics
- Return type:
numpy.ndarray
- pycbc.events.stat.get_statistic(stat)[source]
Error-handling sugar around dict lookup for coincident statistics
- Parameters:
stat (string) – Name of the coincident statistic
- Returns:
Subclass of Stat base class
- Return type:
class
- Raises:
RuntimeError – If the string is not recognized as corresponding to a Stat subclass
- pycbc.events.stat.get_statistic_from_opts(opts, ifos)[source]
Return a Stat class from an optparser object.
This will assume that the options in the statistic_opt_group are present and will use these options to call stat.get_statistic and initialize the appropriate Stat subclass with appropriate kwargs.
- Parameters:
opts (optparse.OptParser instance) – The command line options
ifos (list) – The list of detector names
- Returns:
Subclass of Stat base class
- Return type:
class
- pycbc.events.stat.insert_statistic_option_group(parser, default_ranking_statistic=None)[source]
Add ranking statistic options to the optparser object.
Adds the options used to initialize a PyCBC Stat class.
- Parameters:
- Returns:
strain_opt_group – The argument group that is added to the parser.
- Return type:
optparser.argument_group
pycbc.events.threshold_cpu module
- class pycbc.events.threshold_cpu.CPUThresholdCluster(series)[source]
Bases:
_BaseThresholdCluster
- threshold_and_cluster(threshold, window)[source]
Threshold and cluster the memory specified at instantiation with the threshold and window size specified at creation.
- Parameters:
threshold (float32) – The minimum absolute value of the series given at object initialization to return when thresholding and clustering.
window (uint32) – The size (in number of samples) of the window over which to cluster
Returns
--------
event_vals (complex64) – Numpy array, complex values of the clustered events
event_locs (uint32) – Numpy array, indices into series of location of events
- pycbc.events.threshold_cpu.threshold(series, value)
- pycbc.events.threshold_cpu.threshold_only(series, value)
pycbc.events.threshold_cupy module
- class pycbc.events.threshold_cupy.CUDAThresholdCluster(series)[source]
Bases:
_BaseThresholdCluster
- threshold_and_cluster(threshold, window)[source]
Threshold and cluster the memory specified at instantiation with the threshold and window size specified at creation.
- Parameters:
threshold (float32) – The minimum absolute value of the series given at object initialization to return when thresholding and clustering.
window (uint32) – The size (in number of samples) of the window over which to cluster
Returns
--------
event_vals (complex64) – Numpy array, complex values of the clustered events
event_locs (uint32) – Numpy array, indices into series of location of events
pycbc.events.trigger_fits module
Tools for maximum likelihood fits to single trigger statistic values
For some set of values above a threshold, e.g. trigger SNRs, the functions in this module perform maximum likelihood fits with 1-sigma uncertainties to various simple functional forms of PDF, all normalized to 1. You can also obtain the fitted function and its (inverse) CDF and perform a Kolmogorov-Smirnov test.
Usage: # call the fit function directly if the threshold is known alpha, sigma_alpha = fit_exponential(snrs, 5.5)
# apply a threshold explicitly alpha, sigma_alpha = fit_above_thresh(‘exponential’, snrs, thresh=6.25)
# let the code work out the threshold from the smallest value via the default thresh=None alpha, sigma_alpha = fit_above_thresh(‘exponential’, snrs)
# or only fit the largest N values, i.e. tail fitting thresh = tail_threshold(snrs, N=500) alpha, sigma_alpha = fit_above_thresh(‘exponential’, snrs, thresh)
# obtain the fitted function directly xvals = numpy.xrange(5.5, 10.5, 20) exponential_fit = expfit(xvals, alpha, thresh)
# or access function by name exponential_fit_1 = fit_fn(‘exponential’, xvals, alpha, thresh)
# Use weighting factors to e.g. take decimation into account alpha, sigma_alpha = fit_above_thresh(‘exponential’, snrs, weights=weights)
# get the KS test statistic and p-value - see scipy.stats.kstest ks_stat, ks_pval = KS_test(‘exponential’, snrs, alpha, thresh)
- pycbc.events.trigger_fits.KS_test(distr, vals, alpha, thresh=None)[source]
Perform Kolmogorov-Smirnov test for fitted distribution
Compare the given set of discrete values above a given threshold to the fitted distribution function. If no threshold is specified, the minimum sample value will be used. Returns the KS test statistic and its p-value: lower p means less probable under the hypothesis of a perfect fit
- Parameters:
- Returns:
D (float) – KS test statistic
p-value (float) – p-value, assumed to be two-tailed
- pycbc.events.trigger_fits.cum_fit(distr, xvals, alpha, thresh)[source]
Integral of the fitted function above a given value (reverse CDF)
The fitted function is normalized to 1 above threshold
- pycbc.events.trigger_fits.exponential_fitalpha(vals, thresh, w)[source]
Maximum likelihood estimator for the fit factor for an exponential decrease model
- pycbc.events.trigger_fits.fit_above_thresh(distr, vals, thresh=None, weights=None)[source]
Maximum likelihood fit for the coefficient alpha
Fitting a distribution of discrete values above a given threshold. Exponential p(x) = alpha exp(-alpha (x-x_t)) Rayleigh p(x) = alpha x exp(-alpha (x**2-x_t**2)/2) Power p(x) = ((alpha-1)/x_t) (x/x_t)**-alpha Values below threshold will be discarded. If no threshold is specified the minimum sample value will be used.
- Parameters:
distr ({'exponential', 'rayleigh', 'power'}) – Name of distribution
vals (sequence of floats) – Values to fit
thresh (float) – Threshold to apply before fitting; if None, use min(vals)
weights (sequence of floats) – Weighting factors to use for the values when fitting. Default=None - all the same
- Returns:
alpha (float) – Fitted value
sigma_alpha (float) – Standard error in fitted value
- pycbc.events.trigger_fits.fit_fn(distr, xvals, alpha, thresh)[source]
The fitted function normalized to 1 above threshold
To normalize to a given total count multiply by the count.
- pycbc.events.trigger_fits.power_fitalpha(vals, thresh, w)[source]
Maximum likelihood estimator for the fit factor for a power law model
- pycbc.events.trigger_fits.rayleigh_fitalpha(vals, thresh, w)[source]
Maximum likelihood estimator for the fit factor for a Rayleigh distribution of events
- pycbc.events.trigger_fits.tail_threshold(vals, N=1000)[source]
Determine a threshold above which there are N louder values
pycbc.events.triggers module
This modules contains functions for reading single and coincident triggers from the command line.
- pycbc.events.triggers.bank_bins_from_cli(opts)[source]
Parses the CLI options related to binning templates in the bank.
- pycbc.events.triggers.get_found_param(injfile, bankfile, trigfile, param, ifo, args=None)[source]
Translates some popular trigger parameters into functions that calculate them from an hdf found injection file
- Parameters:
injfile (hdf5 File object) – Injection file of format known to ANitz (DOCUMENTME)
bankfile (hdf5 File object or None) – Template bank file
trigfile (hdf5 File object or None) – Single-detector trigger file
param (string) – Parameter to be calculated for the recovered triggers
ifo (string or None) – Standard ifo name, ex. ‘L1’
args (Namespace object returned from ArgumentParser instance) – Calling code command line options, used for f_lower value
- Returns:
[return value] – The calculated parameter values and a Boolean mask indicating which injections were found in the given ifo (if supplied)
- Return type:
NumPy array of floats, array of boolean
- pycbc.events.triggers.get_inj_param(injfile, param, ifo, args=None)[source]
Translates some popular injection parameters into functions that calculate them from an hdf found injection file
- Parameters:
injfile (hdf5 File object) – Injection file of format known to ANitz (DOCUMENTME)
param (string) – Parameter to be calculated for the injected signals
ifo (string) – Standard detector name, ex. ‘L1’
args (Namespace object returned from ArgumentParser instance) – Calling code command line options, used for f_lower value
- Returns:
[return value] – The calculated parameter values
- Return type:
NumPy array of floats
- pycbc.events.triggers.get_param(par, args, m1, m2, s1z, s2z)[source]
Helper function
- Parameters:
par (string) – Name of parameter to calculate
args (Namespace object returned from ArgumentParser instance) – Calling code command line options, used for f_lower value
m1 (float or array of floats) – First binary component mass (etc.)
- Returns:
parvals – Calculated parameter values
- Return type:
float or array of floats
pycbc.events.veto module
This module contains utilities to manipulate trigger lists based on segment.
- pycbc.events.veto.get_segment_definer_comments(xml_file, include_version=True)[source]
Returns a dict with the comment column as the value for each segment
- pycbc.events.veto.indices_outside_segments(times, segment_files, ifo=None, segment_name=None)[source]
Return the list of indices that are outside the segments in the list of segment files.
- Parameters:
times (numpy.ndarray of integer type) – Array of gps start times
segment_files (string or list of strings) – A string or list of strings that contain the path to xml files that contain a segment table
ifo (string, optional) – The ifo to retrieve segments for from the segment files
segment_name (str, optional) – name of segment
- Returns:
indices (numpy.ndarray) – The array of index values outside the segments
segmentlist – The segment list corresponding to the selected time.
- pycbc.events.veto.indices_outside_times(times, start, end)[source]
Return an index array into times that like outside the durations defined by start end arrays
- Parameters:
times (numpy.ndarray) – Array of times
start (numpy.ndarray) – Array of duration start times
end (numpy.ndarray) – Array of duration end times
- Returns:
indices – Array of indices into times
- Return type:
numpy.ndarray
- pycbc.events.veto.indices_within_segments(times, segment_files, ifo=None, segment_name=None)[source]
Return the list of indices that should be vetoed by the segments in the list of veto_files.
- Parameters:
times (numpy.ndarray of integer type) – Array of gps start times
segment_files (string or list of strings) – A string or list of strings that contain the path to xml files that contain a segment table
ifo (string, optional) – The ifo to retrieve segments for from the segment files
segment_name (str, optional) – name of segment
- Returns:
indices (numpy.ndarray) – The array of index values within the segments
segmentlist – The segment list corresponding to the selected time.
- pycbc.events.veto.indices_within_times(times, start, end)[source]
Return an index array into times that lie within the durations defined by start end arrays
- Parameters:
times (numpy.ndarray) – Array of times
start (numpy.ndarray) – Array of duration start times
end (numpy.ndarray) – Array of duration end times
- Returns:
indices – Array of indices into times
- Return type:
numpy.ndarray
- pycbc.events.veto.select_segments_by_definer(segment_file, segment_name=None, ifo=None)[source]
Return the list of segments that match the segment name
Module contents
This packages contains modules for clustering events